Sensorless Control of Permanent Magnet Motors

Precise speed control of AC motors is typically accomplished with a variable frequency drive (VFD) connected to a speed or position feedback sensor. In certain situations, however, it's possible to achieve a similar level of precision speed control without the need for a feedback sensor via the high frequency signal injection method.

04/01/2010


Precise speed control of AC motors is typically accomplished with a variable frequency drive (VFD) connected to a speed or position feedback sensor. In certain situations, however, it's possible to achieve a similar level of precision speed control without the need for a feedback sensor via the high frequency signal injection method. To implement this method, the VFD must use open loop control, and it must be able to inject the required high frequency signal. The method only works with salient motors such as internal permanent magnet (IPM) synchronous motors.

Basic features of PM motors

 

 

Figure 1 depicts two common types of permanent magnet motors. The magnets of the surface-mounted permanent magnet (SPM) motor are attached on the surface of the rotor, whereas those of the IPM motor are buried inside. Both motor types have high efficiency, but the IPM motor has additional torque because it utilizes both the magnet and reluctance torques generated by the magnetic saliency. Because the magnets of SPM motors need to be fixed on the rotor surface, mechanical strength is weaker than with IPM motors, especially in the high speed region.

 

 

 

 

PM motor magnetic saliency

As shown in Figure 2, the effective air gap in the magnetic flux path of Ld and Lq are the same in SPM motors. The permanent magnets used in motors have very low permeability and can be regarded as air in inductance calculations. As a result, Ld is the same as Lq, therefore a SPM motor has very low inductance saliency. Thus, the inductance value measured at the motor terminal is constant regardless of the rotor position.

 

In an IPM motor, the permanent magnets are buried inside the rotor. Since the permanent magnets have lower permeability (that is, higher reluctance) than iron, the effective air gap in the magnetic flux path varies according to the rotor position. That variance is shown in Figure 3. This is called the magnetic saliency, and it results in variation of the inductance at the motor terminal according to the rotor position. 

 

An interesting characteristic to be noted from this equation: the rotor position can be detected by measuring inductance change. This characteristic enables rotor position detection for open loop vector control, that is control without the need for a speed or position sensor connected back to the motor drive to close.

 

High frequency signal injection method

The basic concept of the high frequency signal injection method is that when a high frequency voltage is injected into an IPM motor with 0 degree injection angle (that is, through the Ld axis), the measured current will be at the highest level because of the lowest inductance. This indicates that motor impedance is at its minimum value, as shown in Figure 5. 

 

The position of the magnetic pole can thus be detected by using the saliency characteristics of Figure 5. Considering restriction in implementation, effective injection frequency ranges between 200 Hz to 1,000 Hz. 

 

Here's how: Upon starting, a PM motor controller initially does not know the actual position of magnetic poles, so an arbitrary axis is presumed and defined as the d-axis or the magnetic pole axis. A high-frequency voltage signal is then injected on the presumed d-axis to track the actual magnetic pole position. 

 

Motor currents are measured at both the dm and qm axes. If the estimated d-axis is not aligned to the real PM magnet axis, the measured high-frequency current components on the dm and qm axes are different. In the advanced open loop vector control algorithm, the estimated d-axis is adjusted until current difference  becomes minimum, aligning the estimated d-axis to the real magnetic pole axis.

 

Advanced open loop vector control via the high frequency injection method with an IPM motor provides speed control with a 1:100 range, speed response of 10Hz and accuracy, or plus or minus 0.2%. For applications where these speed control specifications are sufficient, this method is simpler and lower in cost than closed loop control with speed or position feedback sensor. 

 

 

 

Author Information

Jun Kang, Ph.D, is chief engineer for Yaskawa Electric America Inc. A significant reference for this article was Ide Kozo, et al, “Sensorless Drive Technology for Permanent Magnet Synchronous Motor,” in Yaskawa Technical Review, Vol.69; No.2, 2005; pp.93-98.



No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
The true cost of lubrication: Three keys to consider when evaluating oils; Plant Engineering Lubrication Guide; 11 ways to protect bearing assets; Is lubrication part of your KPIs?
Contract maintenance: 5 ways to keep things humming while keeping an eye on costs; Pneumatic systems; Energy monitoring; The sixth 'S' is safety
Transport your data: Supply chain information critical to operational excellence; High-voltage faults; Portable cooling; Safety automation isn't automatic
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Maintaining low data center PUE; Using eco mode in UPS systems; Commissioning electrical and power systems; Exploring dc power distribution alternatives
Synchronizing industrial Ethernet networks; Selecting protocol conversion gateways; Integrating HMIs with PLCs and PACs
Why manufacturers need to see energy in a different light: Current approaches to energy management yield quick savings, but leave plant managers searching for ways of improving on those early gains.

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.