Saturated control elements: When you hit the end of the scale

Scotty’s “Captain, I’m giving you all she’s got,” tells Kirk that he’s reached maximum output. The same thing can happen in your production unit. What results depends on the nature of your process.

09/13/2013


A recent Real World Engineering blog post described a problem situation that is probably pretty common. The discussion cited a plant with an induced draft blower on a regenerative thermal oxidizer (RTO). The problem was that anytime the plant operated the blower, it invariably ran at full speed with a howl that disturbed residents living anywhere near the plant.

The situation wasn’t because the blower had no speed control. On the contrary, it had a VFD that seemed to be stuck at maximum. The author pointed out that the problem wasn’t with the VFD, it was with the control system. The blower was regulated by a controller that was supposed to modulate the speed according to the demands of the RTO. The troubleshooter found that the installer had never tuned the loop and had carelessly left the setpoint set such that the controller was demanding a greater volume of air than the blower was capable of delivering even running at full speed.

This heater is on full blast, but it can’t put out enough for the process to reach its setpoint. It levels out at some point.In control loop terms, that blower is described as saturated. It’s doing the best it can, but it cannot move the process variable to the setpoint. Such saturated conditions are not all that hard to find, particularly as a company tries to push more production out of a given process. That control point in the process becomes the bottleneck or the limiting factor for production from that unit. If you’ve ever run out of hot water because too many people want to take showers at the same time, you have saturated your hot water heater. The burner may be turned on full blast, but it can’t keep up.

Once some process element is saturated, the result will depend on the general nature of the process. Some processes are characterized as being self-regulating. This means that it will eventually settle in some sub-optimal state, but it will still operate. The blower still pulled air through the RTO, and your shower still works, although probably colder than you like. Self-regulating processes can be identified in the control room by looking at the traces on the display. While the process variable won’t reach the setpoint, it will settle at some point and run more or less in parallel to the setpoint.

In this example, the process draws output from a tank. If the output is set higher than the maximum input, the level will fall until drained, at which point the output equals input.Other processes are called integrating (aka non-self-regulating), which means that they can only operate for a limited amount of time when out of control before a specific problem emerges. The classic example of an integrating process is a storage tank. If the input to the tank is greater than the output because the output valve is wide open (saturated), it’s only a matter of time until it overflows. Similarly, if the output is greater than the input because the valve filling the tank is wide open (again, saturated), eventually the tank will be drained empty. Integrating processes can be identified in the control room when the process variable continues to diverge from the setpoint.

Saturated control elements can make a process difficult to control. When a valve, pump, heater, or some other device reaches the end of its scale, that device becomes the primary control element. If the process was not designed with the idea of having that device in such a role, you’re stuck. Your best choice may be to dial everything back until there is some headroom. In the long run, such devices should be replaced with something sized more appropriately. Over time, the weak links of the chain can be eliminated, resulting in a process that can operate comfortably at the desired output levels.

Peter Welander is a content manager for Control Engineering. pwelander(at)cfemedia.com

Learn more about how a saturated controller causes "reset windup" in a PID control loop.



No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
The true cost of lubrication: Three keys to consider when evaluating oils; Plant Engineering Lubrication Guide; 11 ways to protect bearing assets; Is lubrication part of your KPIs?
Contract maintenance: 5 ways to keep things humming while keeping an eye on costs; Pneumatic systems; Energy monitoring; The sixth 'S' is safety
Transport your data: Supply chain information critical to operational excellence; High-voltage faults; Portable cooling; Safety automation isn't automatic
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Maintaining low data center PUE; Using eco mode in UPS systems; Commissioning electrical and power systems; Exploring dc power distribution alternatives
Synchronizing industrial Ethernet networks; Selecting protocol conversion gateways; Integrating HMIs with PLCs and PACs
Why manufacturers need to see energy in a different light: Current approaches to energy management yield quick savings, but leave plant managers searching for ways of improving on those early gains.

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.