Real-time power management is a plant manager's secret weapon

Technology that allows plant managers to have more control may improve system utilization, lower energy costs, and foster financial stability

02/12/2014


Figure 1. Estimated production dollar loss per outage event for large (50 MW) industrial users. The graph shows the increasing loss in revenue for longer outage times. Production loss per event = $/kW x Recorded Peak kW. Data courtesy: ETAPModern power management systems require new techniques and cutting-edge technology to allow electrical power users and producers to be competitive. Technology that allows plant managers to have more control may improve system utilization, lower energy costs, and foster financial stability.

A new breed of model-based power management applications that have the capability to integrate an active blueprint of the system including system topology, engineering parameters, and other pertinent information with time-synchronized-data will help make system operation more efficient.

Advanced applications and simulation engines would also allow for improved situational awareness, a more proactive approach, and improved decision making for operators under emergency conditions. Additionally, this type of power management system could serve various levels within the enterprise such as operators, engineers, planners, and managers.

Model validation

One of the key advantages of utilizing a model-based power management system is maintaining the consistency of a network model across engineering, planning, protection, and operational departments. Traditionally, real-time systems use power system models that vary in detail and structure from the models used for offline studies. The links connecting the different models are typically not maintained, giving them incompatible data formats.

Planning and operating decisions are based on the results of power system simulations. Optimistic models can result in under-investment or unsafe operating conditions while pessimistic models can also lead to unnecessary capital investment, thereby increasing the cost of electric power. Realistic models are needed for ensuring reliable and economic power system operation.

Verifying and validating the network model with real-time and/or archived data is a crucial step. Preparing a benchmarked model will help with state estimation, monitoring, predictive simulation, forensic "root cause and effects" analysis, optimization, proactive-contingency analysis, and remedial action. Customizing a network model can be achieved through utilizing a power management system that offers traditional simulation analysis tools on the same platform as the real-time operations tools.

Intelligent monitoring

System monitoring is the base function for any power management software. In addition, seamless integration with metering devices, data acquisition, and archiving systems is essential to properly monitoring software.

All this information should be accessible to the system operator through advanced man-machine interfaces such as an interactive one-line diagram that provides a logical system-wide view. To process the telemetry data and determine the missing or faulty meter values, one should use advanced techniques such as the State and Load Estimator.

Standard power monitoring systems are inadequate because they monitor based on the "eyes" you provide in the form of digital measurement devices and can be expensive to install. An intelligent monitoring system, in contrast, should be able to compensate for the absence of physical meters through providing virtual metering devices. Virtual meters not only improve situational awareness, but also provide a means to monitor alarm equipment that may not be visible to a traditional power monitoring system.

Dashboards and thin clients

Energy dashboards summarize and record alarm conditions in case of unusual activity, providing continuous visual monitoring of user-selected parameters in any mode of operation. This provision allows for the early detection and display of problems before a critical failure occurs.

A modern power management system should not only provide monitored data via thin client, but also offer the following key advantages:

First, it uses the same electrical model as the desktop client and the offline planning model without having to recreate or maintain copies of the model. This results in significant time and cost savings when building human-machine interfaces (HMIs). Traditional power monitoring systems are inexpensive to purchase, but take up a significant amount of time, resources, and engineering cost to set up the HMIs. Extensive engineering man-hours are also spent modifying the existing HMIs, while in a model-based power management system, the offline study model can be simply transitioned and connected with real-time data.

Second, the operator is able to recall and run pre-defined scenarios to help make a simple decision. This becomes particularly important in emergency conditions, as an information overload will not only slow down every decision, it may also lead to a complete system shutdown.

Online simulation

System engineers and operators should have instant access to energy information and analysis tools to help them predict an outcome before taking actions on a power system.

To design, operate, and maintain a power system, one must first understand its behavior. The operator should have firsthand experience with the system under various operating conditions to effectively react to system changes. This will avoid an inadvertent plant outage caused by human error and equipment overload.

For industrial and generation facilities that use power system analysis applications, the ability to perform system studies and simulate hypothetical scenarios using real-time operating data is paramount. With real-time data, for example, the system operator could simulate the impact of starting a large motor without actually starting the motor.


<< First < Previous 1 2 Next > Last >>

No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Leaders Under 40 program features outstanding young people who are making a difference in manufacturing. View the 2013 Leaders here.
The new control room: It's got all the bells and whistles - and alarms, too; Remote maintenance; Specifying VFDs
2014 forecast issue: To serve and to manufacture - Veterans will bring skill and discipline to the plant floor if we can find a way to get them there.
2013 Top Plant: Lincoln Electric Company, Cleveland, Ohio
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Bring focus to PLC programming: 5 things to avoid in putting your system together; Managing the DCS upgrade; PLM upgrade: a step-by-step approach
Balancing the bagging triangle; PID tuning improves process efficiency; Standardizing control room HMIs
Commissioning electrical systems in mission critical facilities; Anticipating the Smart Grid; Mitigating arc flash hazards in medium-voltage switchgear; Comparing generator sizing software

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.