Optimize automation design for serviceability

Machine builders specializing in factory automation and assembly systems are challenged at every turn. Capital equipment investment is high, material and labor costs are increasing, competition is growing fiercer and customers are demanding faster delivery. It’s not surprising that machine manufacturers are constantly seeking ways to contain costs and increase efficiency, while maintainin...




Machine builders specializing in factory automation and assembly systems are challenged at every turn. Capital equipment investment is high, material and labor costs are increasing, competition is growing fiercer and customers are demanding faster delivery.


It’s not surprising that machine manufacturers are constantly seeking ways to contain costs and increase efficiency, while maintaining strict quality and performance standards. One approach that has worked for many automation industry leaders is adoption of a design engineering strategy that standardizes on configurable machine parts, wherever possible, in order to replace unique custom-designed components with more modular and readily accessible ones.


For machine builders, this strategy has proven effective in helping reduce engineering and production time and costs %%MDASSML%% often as much as 50%. However, what many have also learned is that specifying modular, configured parts rather than custom parts has also helped their customers by making it easier to maintain and repair equipment.


Faster access to configured parts allows end users to eliminate the time, expense and hassles associated with ordering custom-designed parts. They can also reduce the need for substantial replacement parts inventory.


The importance of serviceability

Like automation system producers, plant operations and control engineers also face challenges. Their role is to keep mission-critical operations up and running smoothly, safeguard worker safety and see that quality standards are met. To do this, they need to ensure that machines are monitored and equipment is maintained and serviced properly. They need to ensure that replacement parts are readily accessible when required. In their world, unscheduled downtime caused by equipment failure is simply not an option.


In any machine, many mechanical parts are subject to wear and tear and must be maintained, and repaired or replaced. High stress parts need to be replaced more frequently so they don’t malfunction and cause production problems. In fast-moving plant automation lines, machine wear is caused by physical forces such as load, torque, friction, impact shock, heat, vibration, length and frequency of motion as well as humidity and any other atmospheric factors %%MDASSML%% all of which can have a negative impact on the performance and reliability of the machinery over time.


Modular, configurable parts can help

The concept of standardization is simple, yet effective. Some commonly used configurable parts include linear shafts, actuators, linear guides, ball screws, bushings, locating pins, metal plates, extrusions and conveyor rollers.


Machine builders can specify the parts in various sizes, material hardness and coatings and sometimes can order specific tooling modifications. Once a part has been configured and the model downloaded, it can be added to that machine’s bill of materials. Some part suppliers will even standardize the part within its product database, assigning it a unique part number for fast and easy replacement ordering.


Adding value

The benefits that automation system end users can derive when their equipment manufacturers specify configurable parts include:


  • Fast, easy ordering of replacement parts with short lead times mitigates the need to maintain safety inventories of replacement parts; an order is quoted and placed with a part number %%MDASSML%% not a drawing

  • MRO time and cost savings, because configured parts are less costly and can be ordered and delivered faster than custom replacement parts

  • Product life cycle information can often times be obtained for each discrete configured component from the machine builder and/or part supplier detailing the average life expectancy of each part (or mean time between failure), based on formulas that measure the effects of physical forces to which the part is subjected

  • Higher return on assets for capital equipment is also achievable as a result of keeping automation machinery and systems in optimum condition to deliver peak performance

    • Machine builders focused on optimizing machine designs for serviceability not only derive benefits for their own companies, but also provide significant and measurable value to their customers.

No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
Safety for 18 years, warehouse maintenance tips, Ethernet and the IIoT, GAMS 2016 recap
2016 Engineering Leaders Under 40; Future vision: Where is manufacturing headed?; Electrical distribution, redefined
Strategic outsourcing delivers efficiency; Sleeve bearing clearance; Causes of water hammer; Improve air quality; Maintenance safety; GAMS preview
SCADA at the junction, Managing risk through maintenance, Moving at the speed of data
Safety at every angle, Big Data's impact on operations, bridging the skills gap
The digital oilfield: Utilizing Big Data can yield big savings; Virtualization a real solution; Tracking SIS performance
Applying network redundancy; Overcoming loop tuning challenges; PID control and networks
Driving motor efficiency; Preventing arc flash in mission critical facilities; Integrating alternative power and existing electrical systems
Package boilers; Natural gas infrared heating; Thermal treasure; Standby generation; Natural gas supports green efforts

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
This article collection contains several articles on the vital role of plant safety and offers advice on best practices.
This article collection contains several articles on the Industrial Internet of Things (IIoT) and how it is transforming manufacturing.
This article collection contains several articles on strategic maintenance and understanding all the parts of your plant.
click me