On-line tool-workpiece contact detection is based on cutting forces signal

Control Engineering International: Very small tool dimensions in the micro-milling process make finding a contact of the tool and the workpiece unrealistic without a microscope. Automating the process helps the machine operator and eliminates human errors. See graphics.

03/26/2013


Information about tool location according to workpiece is crucial for performing micro-milling correctly. Workpieces prepared for micro-milling processes can have different dimensions after machining operations. There is a need to find the “zero” point of workpiece surface in tool axial direction (Z). Zero point is usually specified as the point of toll and workpiece contact. The easiest (but most time-consuming and most demanding for machine operators) method of finding contact is observation of the rotating tool, which is slowly moved toward the workpiece. Due to very small tool dimensions, this method requires a microscope for tool observation. Automation of this process gives better repeatability and accuracy of tool-workpiece contact detection. Cutting force signals have not been used before for tool-workpiece contact detection.

The system

The main idea of the proposed tool-workpiece contact detection method is based on the how much the cutting force signals increase in Z axis when the tool touches the workpiece. Cutting forces increase for a very short period of time, thus short time signal analysis has to be used. Systems for online tool-workpiece contact detection are based on a diagnostic system previously described [“Real-time diagnostics system for micromilling,” by Bogdan Broel-Plater, Krzysztof Pietrusewicz, and Paweł Waszczuk, Nov. 7, 2012, CE USA]. A block diagram of the system is shown in Figure 1. The system is scalable and can be extended with acoustic emission sensors or acoustic pressure sensors. All analysis must be performed in real time; therefore, National Instruments’ programmable automation controller CompactRio was used for signal processing. Micro-milling machine Aerotech linear drives also have to be controlled in real time; the movement must be stopped immediately after detection of tool-workpiece contact to avoid workpiece damage. Aerotech linear drives can be directly controlled through National Instruments LabVIEW software.

Fig. 1. Block diagram describes the system used for on-line tool-workpiece contact detection. Courtesy: West Pomeranian University of Technology, Szczecin, and Control Engineering Poland

Method and procedure

First, calibration obtains the  the coefficient value for the specified workpiece material. The calibration should use a method that detects tool-workpiece contact, such as observation of the rotating tool, which is slowly moved toward the workpiece. Calibration must be done only once for the specified workpiece material.

Fig. 2. Algorithm helps with on-line tool-workpiece contact detection. Courtesy: West Pomeranian University of Technology, Szczecin, and Control Engineering PolandSpindle rotation must be on during the procedure. The tool is moved toward the workpiece at speed v in step of Δz. During tool movement, the cutting force signal is recorded. Then the root mean square (RMS) value of the cutting force for n signal samples is calculated. The sampling frequency is set to the maximum possible value (51200 samples per second). The algorithm of the procedure is shown in Figure 2. The algorithm was implemented in National Instruments LabVIEW. Crucial for reliable operation of the procedure is setting the right parameters, such as spindle rotational speed, tool speed v, and step value Δz.

The value signal processing method must be resistant to factors such as a high noise level and very low cutting forces. To achieve this at the beginning of the procedure, when there is certainty that the tool is outside the workpiece, the mean value from m root mean square (RMS) reference values is calculated. Then current RMS value from n signal samples is calculated and compared to the reference value calculated outside the workpiece. A comparison is made with the coefficient defined as current RMS value to reference RMS value. When the coefficient value is higher than previously set for the current workpiece, material contact is detected and reference “zero” point is found.

Improved quality, fewer errors

The proposed solution for on-line tool-workpiece contact detection significantly improves the machine operator’s work and eliminates human error. Due to the applicability of the described method and its varieties, three patent applications have been submitted to the Polish Patent Office. The presented solution can be implemented in any CNC machine system, but it is especially designed for micro-milling applications. The issue of tool-workpiece contact detection will be developed in further studies.

- Marcin Matuszak, Msc, is a PhD student at West Pomeranian University of Technology, Szczecin, Poland. His main field of interest is micro-milling processes, especially cutting forces and dynamics. Paweł Waszczuk, Msc, also is a PhD student there. His PhD thesis examines the problem of integrating correcting functionalities for robust control of digital servodrives. Krzysztof Pietrusewicz, DSc, is an assistant professor at West Pomeranian University. All three contribute to Control Engineering Poland. Edited by Mark T. Hoske, content manager, CFE Media, Control Engineering, mhoske(at)cfemedia.com.

ONLINE

www.controlengpolska.com 

www.ni.com 

Other Control Engineering International coverage



No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
The true cost of lubrication: Three keys to consider when evaluating oils; Plant Engineering Lubrication Guide; 11 ways to protect bearing assets; Is lubrication part of your KPIs?
Contract maintenance: 5 ways to keep things humming while keeping an eye on costs; Pneumatic systems; Energy monitoring; The sixth 'S' is safety
Transport your data: Supply chain information critical to operational excellence; High-voltage faults; Portable cooling; Safety automation isn't automatic
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Maintaining low data center PUE; Using eco mode in UPS systems; Commissioning electrical and power systems; Exploring dc power distribution alternatives
Synchronizing industrial Ethernet networks; Selecting protocol conversion gateways; Integrating HMIs with PLCs and PACs
Why manufacturers need to see energy in a different light: Current approaches to energy management yield quick savings, but leave plant managers searching for ways of improving on those early gains.

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.