Natural gas plants with solar boost

A new system under development converts natural gas and sunlight into a fuel called syngas, which power plants can burn to make electricity

04/24/2013


ISS SourceIt might soon be possible for natural gas power plants to use about 20% less fuel when the sun is shining by injecting solar energy into natural gas with a new system under development.

The system converts natural gas and sunlight into a more energy-rich fuel called syngas, which power plants can burn to make electricity.

“Our system will enable power plants to use less natural gas to produce the same amount of electricity they already make,” said the Department of Energy’s (DoE) Pacific Northwest National Laboratory (PNNL) Engineer Bob Wegeng, who is leading the project. “At the same time, the system lowers a power plant’s greenhouse gas emissions at a cost that’s competitive with traditional fossil fuel power.”

PNNL will conduct field tests of the system at its campus in Richland, Wash., this summer.

With the U.S. increasingly relying on inexpensive natural gas for energy, this system can reduce the carbon footprint of power generation. DoE’s Energy Information Administration estimates natural gas will make up 27% of the nation’s electricity by 2020. Wegeng said PNNL’s system works best in power plants located in sunshine-drenched areas such as the American Southwest.

Installing PNNL’s system in front of natural gas power plants turns them into hybrid solar-gas power plants. The system uses solar heat to convert natural gas into syngas, a fuel containing hydrogen and carbon monoxide. Because syngas has a higher energy content, a power plant equipped with the system can consume about 20% less natural gas while producing the same amount of electricity.

This decreased fuel usage is possible with concentrating solar power, which uses a reflecting surface to concentrate the sun’s rays like a magnifying glass. PNNL’s system uses a mirrored parabolic dish to direct sunbeams to a central point, where a PNNL-developed device absorbs the solar heat to make syngas.

About four feet long and two feet wide, the device contains a chemical reactor and several heat exchangers. The reactor has narrow channels as wide as six dimes stacked on top of each other. Concentrated sunlight heats up the natural gas flowing through the reactor’s channels, which hold a catalyst that helps turn natural gas into syngas.

The heat exchanger features narrower channels that are a couple times thicker than a strand of human hair. The exchanger’s channels help recycle heat left over from the chemical reaction gas. By reusing the heat, solar energy is more efficient in its ability to convert natural gas into syngas. Tests on an earlier prototype of the device showed more than 60% of the solar energy that hit the system’s mirrored dish converted into chemical energy contained in the syngas.

PNNL is refining the earlier prototype to increase its efficiency while creating a more cost sensitive design. The project includes developing cost-effective manufacturing techniques that could work in mass production. The manufacturing methods will end up developed by PNNL staff at the Microproducts Breakthrough Institute, a research and development facility in Corvallis, OR, jointly managed by PNNL and Oregon State University.

Wegeng’s team aims to keep the system’s overall cost low enough so the electricity produced by a natural gas power plant equipped with the system would cost no more than 6 cents per kilowatt-hour by 2020. Such a price tag would make hybrid solar-gas power plants competitive with conventional, fossil fuel-burning power plants while also reducing greenhouse gas emissions.

The system is adaptable to a large range of natural gas power plant sizes. The number of PNNL devices needed depends on a particular power plant’s size. For example, a 500 MW plant would need roughly 3,000 dishes equipped with PNNL’s device.

Unlike many other solar technologies, PNNL’s system doesn’t require power plants to cease operations when the sun sets or clouds cover the sky. Power plants can bypass the system and burn natural gas directly.

Wegeng also envisions a day when PNNL’s solar-driven system could create transportation fuels. Syngas can also make synthetic crude oil, which can then refine into diesel and gasoline.



No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Leaders Under 40 program features outstanding young people who are making a difference in manufacturing. View the 2013 Leaders here.
The new control room: It's got all the bells and whistles - and alarms, too; Remote maintenance; Specifying VFDs
2014 forecast issue: To serve and to manufacture - Veterans will bring skill and discipline to the plant floor if we can find a way to get them there.
2013 Top Plant: Lincoln Electric Company, Cleveland, Ohio
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Bring focus to PLC programming: 5 things to avoid in putting your system together; Managing the DCS upgrade; PLM upgrade: a step-by-step approach
Balancing the bagging triangle; PID tuning improves process efficiency; Standardizing control room HMIs
Commissioning electrical systems in mission critical facilities; Anticipating the Smart Grid; Mitigating arc flash hazards in medium-voltage switchgear; Comparing generator sizing software

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.