More with less, fewer, and smaller

10/08/2013


Virtualization: Controlling your PC population 

Virtualization is a technology that allows running two or more operating systems side-by-side on just one PC or server, and it is rapidly being adopted in the industrial world. While the word “virtualization” is simply another term for abstraction, in practice it allows engineers to save cost, reduce footprint, and consolidate systems in ways that were not previously possible.

Deploying virtualization allows multiple “virtual machines,” each running its own operating system and application, to function at the same time on a single physical machine. Virtualization achieves this while guaranteeing that a given virtual machine gets exactly the amount of resources required to do its job, and ensuring any issues with one virtual machine won’t impact another. This type of consolidation reduces the need for multiple machines and maximizes the use of hardware resources.

By improving hardware utilization, plants are able to cut down on the number of physical computers they require, which has a direct correlation with the footprint of a control system.

When it comes to a discussion of virtualization as it relates to an industrial control system, it is important to understand the true meaning of the term “footprint.” In addition to the physical space occupied by servers, workstations, and ancillary components, factors such as power consumption, cooling requirements, equipment weight, and operating noise all contribute to the system footprint. In greenfield plant projects, companies must find the best way to reduce their control system footprint without negatively impacting project results. For companies with existing installations, reducing footprint improves the working environment for operators while reducing operational cost.

How virtualization can help

In the server room, virtualization solutions reduce the physical footprint of hardware components in the plant server room. Facility savings are both direct (consumed by the hardware) and indirect (ancillary service reductions). Running these virtualization solutions on blade hardware then provides the ultimate synergy of resource utilization provided by virtualization with the hardware density provided by blade technology.

For a typical-sized DCS cluster, using traditional methods of deployment might take 50 U (rack units) of space for the server and workstation equipment. Virtualization with blade technology could enable the same functionality in approximately 7 U of space. With the reduction in space, there is a corresponding reduction in weight, power consumption, and cooling. Not only is the system footprint reduced in size, but also the space it does consume is more predictable. This is particularly advantageous with packaged solutions where there is a desire to have a standardized layout, with the flexibility to accommodate the individual needs of customers.

When power requirements are reduced, there is also a subsequent reduction in the amount of uninterruptible power supply (UPS) capacity required by the equipment. Given that the equipment runs cooler, there is a corresponding power reduction due to minimized cooling needs. Both the UPS and cooling equipment are lighter as well.

The above footprint benefits for server rooms are particularly important for industries such as oil and gas, where offshore facilities have inherent space constraints and other physical and operational considerations.

In the control room, virtualization and thin client visualization are two powerful technologies that are complementary and even more effective when implemented together. In industrial environments, these technologies intersect when thin clients are connected to virtualized systems to provide visualization and operator interface.

A thin client is a stateless, fan-less appliance that has no hard drive, consisting only of simplified hardware and software. In contrast with a regular deployment, applications, sensitive data, memory, and so forth, are stored back in the data center when using a thin client.

Virtualized servers with a thin client operator interface are the best option for many applications commonly found in the plant control room. Like the server room example, users can optimize the same footprint vectors—equipment space, cooling, and noise. This is achieved through the thin client’s compact form and lower power usage, and lack of rotating parts such as hard drives and fans. It is not even a requirement that thin clients are co-located in the same facility or geographical region as the servers, as the link to the server is made via a network connection, and all the core software and performance reside in the host.

Paul Hodge is Experion infrastructure and HMI product manager for Honeywell Process Solutions.

ONLINE

www.beckhoff.com

www.honeywellprocess.com

www.phoenixcontact.com 

Key concepts:

  • Growing sophistication of control equipment is reducing the collective amount and size of equipment, permitting more efficient use of plant space.
  • Energy use has also reduced direct and ancillary costs as more efficient equipment requires less cooling, etc.

<< First < Previous 1 2 3 Next > Last >>

Jonas , , 11/08/13 03:55 AM:

Personally I believe another important way to reducing cabinet size and footprint is to use fieldbus technology for sensors and actuators instead of 4-20 mA and on/off signals. By using fieldbus, you can put as many as 16 devices on a single pair of wire, taking the place of on average 3 signals per device (48 signal wires replaced by one pair of wires). Perhaps only 10 devices will initially be installed per fieldbus, but it is still a dramatic reduction in the number of cable pairs, terminal blocks, and most importantly I/O cards that results in less cabinets and footprint. Moreover, since all signals are marshaled in software, marshalling cross-wiring is eliminated. They call it “virtual marshalling”:
http://www.fieldbus.org/images/stories/technology/aboutthetechology/overview/fieldbus_brochure.pdf

By using PROFIBUS-DP for motor controls such as variable speed drives (VSD), motor starters, and MCC, the need for relays and AC signals in the cabinets can also be reduced. This is over and above massive cable and I/O card savings.
http://www.ceasiamag.com/article-6631-thedigitaldrive-LogisticsAsia.html

Combining FOUNDATION fieldbus for process control and PROFIBUS-DP for motor controls is another way to significantly reduce the number of components and consequently, the space needed in the cabinet.

Using real-time digital communication networks all the way to the transmitters and valves also enables more effective intelligent device management (IDM) software part of the asset management system for device diagnostics, calibration trim, and configuration/setup. This enables more effective planning of daily maintenance and scheduling of turnarounds. Learn more:
http://www.eddl.org/DeviceManagement/
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
The true cost of lubrication: Three keys to consider when evaluating oils; Plant Engineering Lubrication Guide; 11 ways to protect bearing assets; Is lubrication part of your KPIs?
Contract maintenance: 5 ways to keep things humming while keeping an eye on costs; Pneumatic systems; Energy monitoring; The sixth 'S' is safety
Transport your data: Supply chain information critical to operational excellence; High-voltage faults; Portable cooling; Safety automation isn't automatic
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Maintaining low data center PUE; Using eco mode in UPS systems; Commissioning electrical and power systems; Exploring dc power distribution alternatives
Synchronizing industrial Ethernet networks; Selecting protocol conversion gateways; Integrating HMIs with PLCs and PACs
Why manufacturers need to see energy in a different light: Current approaches to energy management yield quick savings, but leave plant managers searching for ways of improving on those early gains.

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.