Modular electric robotic cars developed for cities

It is not science fiction anymore: a car with an adaptive and modular design that fulfills the personal requirements of a driver better than a usual car. The EO smart connecting cars aim to solve urban traffic problems.


The Robotics Innovation Center (RIC) at DFKI (Deutsches Forschungszentrum fuer Kuenstliche Intelligenz/German Research Center for Artificial Intelligence) in Bremen has shown its experience with a range of projects involving self-developed, upgraded, modular, and reconfigurable vehicle platforms in the electric mobility field that aim to meet the needs of urban life. The EO smart connecting car (EOscc) concept vehicle family is known for its morphological adaptation and its modular construction concept for a spectrum of specific applications, which makes it a pioneer in its field. "EO" means "I go" in Latin.

Figures 1 and 2: From concept to reality: EO smart connecting car 1 (left) and 2 (right) developed by DFKI-RIC. Courtesy: CAN in Automation/DFKIFigures 1 and 2: From concept to reality: EO smart connecting car 1 (left) and 2 (right) developed by DFKI-RIC. Courtesy: CAN in Automation/DFKI

EOscc1 and EOscc2 are designed as micro-car sized electric robotic vehicles, where complex robot design requirements have to be met, among them extended mechanical functionality demands, as well as vehicle requirements, for example high power capability and robustness. With the help of rapid development methods, optimization, and modular configurable approaches, EOscc2 and EOscc1 are vehicles that can meet individual mobility requirements for everyday life. Both cars are four wheel-driving electric vehicles with x-by wire (steer-brake-throttle) control, which reaches extended maneuverability through its suspension/axle design and decentralized power train (wheel hub motors and brushless dc motor controllers).

With these features, the vehicles eliminate the problems of urban traffic such as shortage of parking spaces, maneuverability in extreme traffic situations, and more. With the coupling mechanism for Car-2-Car, Car-2-Extender, or Car-2-Infrastructure (charging station, rental station), the cars reach high modularity.

Modules like the range extender and the pick-up module allow vehicle extension up to the road train mode and are based on hardware and software configurability. They enable a higher efficiency and individuality of applications. Because of these features, the electric robotic systems are quite complex. In order to cope with this complexity, these issues are addressed through the design and the development.

With this perspective, EOscc1 was constructed with a total of 24 independently-controllable off-the-shelf linear electric actuators, which adjust the mechanical body part position for steering (from double Ackermann up to sideways driving), lifting (from adjusting the height of wheels up to changing the curve tilting of the vehicle), and folding of the car individually. Each linear electric actuator, for example the brushless DC motor controller of the wheel hub motors, is controlled separately by an industrial central PC (PC/104) via four different CAN networks (front axle, rear axle, morphology, control and power electronics). This achieves a higher modularity and flexibility in a basic physical bus topology, as well as easier system development, and less installation and testing effort.

EOscc2 is the second generation of the DFKI modular concept electric robot vehicles with optimized and modified suspension and body design for robustness and extended functionality, which aim to solve urban traffic problems and achieve autonomous driving. During the development of the control layer of the EOscc2, we kept the whole system as clearly arranged as possible, aiming at a feasible system implementation with our experience from EOscc1. Therefore, the control layers "high-level" (perception and planning for robotic behavior on Robot Construction Kit framework) and "mid/low-level" (actuation of whole hardware components) of the EOscc2 are separated, unlike the control layers of the EOssc1.

During the development of EOscc2, a linear actuator was designed and constructed in-house. To build the linear actuator, an industrial synchronous servomotor with integrated powerful driver electronics and ball screw or acme thread type spindle gear were combined.

The actuators are built with servo control electronics and communicate via the CANopen network, which is a sophisticated and secure communication standard for distributed industrial automation systems. The selected servomotors of the EOscc2 actuators gave the system development the necessary flexibility for different tasks, for example steering (between 32 to -92°), lifting (in total 16 cm), folding (to decrease the parking space from 4,32 m² to 2,84 m²) or the manipulation of other body parts. They are used as servomotors with matching physical characteristic and CANopen network, which enables the addition of servos up to 127 network nodes without a huge programming effort on the control software.

The CANopen communication, which is based on the CiA 301 standard, as well as the adjustable device profiles and different motor control functions increases the dynamics of the robot system. Especially some features of CANopen, such as standardized device function and parameter description (Object Dictionary) keep the system straightforward and at the same time modular and flexible. The "producer-consumer model" without any additional protocol overhead enables efficient transmission, so that the message of a node is transmitted to other CANopen nodes like a broadcast message. This solves the complex synchronized critical control tasks of the robotic vehicle.

To realize the control of the whole CANopen network, we started to develop rapid control prototyping (RCP) methods and created a model-based experimental control logic of CANopen network according to CiA 402 in a Matlab/Simulink environment. Later, this network management and state-machine control logic subsystem (see the green Simulink model in Figure 3) was connected to the mid- and low-level control layer (steering and lifting actuator control, steer/drive/brake-by-wire, communication, and user interfaces) and the kinematic models of the robotic system to control all network nodes as well as other vehicle control objects on different CAN networks.

Figure 3: Simulink model of CANopen network state machine of EOscc2 State machine (green) and the can message trans-receive model block (blue). Courtesy: CAN in Automation/DFKIFigure 3: Simulink model of CANopen network state machine of EOscc2 State machine (green) and the can message trans-receive model block (blue). Courtesy: CAN in Automation/DFKI

Because of its modularity and scalability, the same software module could be re-used within the main model controlling the whole car. Afterwards, the whole system was tested in a hardware-in-the-loop (HIL) platform. Thus, the RCP unit could iteratively be used for device control and parameter tuning starting from the early stages of the development.

The last step was adapting the protocols for the micro-controller (32-bit ARM Cortex-M) of the vehicle control unit (VCU), reusing some parts of the RCP model and code, which were already written in C (see Figure 4). Hence, the VCU micro-controller took over the CANopen network management tasks (NMT) within different subroutines, for example the setup of servo motors (via service data objects (SDO) direct access to object dictionary (OBJ) and re-mapping of process data objects (PDO) parameter), as well as observing and controlling device states (status and control word management) with 500 kbit/s CAN synchronized broadcast communication.

Figure 4: The components of the CANopen state machine routine of EOscc2 Courtesy: CAN in Automation/DFKI

The development of the CANopen network control and device management was successfully transferred to another platform with the aim to upgrade four on-the-shelf MIA electric vehicles in order to manipulate the steering and the braking systems of the vehicle for autonomous driving in the Dabrem project (Dalian Bremen Electric Mobility).

Mehmed Yüksel, Deutsches Forschungszentrum für Künstliche Intelligenz (DFKI). This article originally appeared in the CAN in Automation (CAN) Newsletter magazine. CiA is a CFE Media content partner. Edited by Chris Vavra, production editor, Control Engineering, CFE Media,

ONLINE extra

See additional stories from CAN in Automation linked below.

The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
Doubling down on digital manufacturing; Data driving predictive maintenance; Electric motors and generators; Rewarding operational improvement
2017 Lubrication Guide; Software tools; Microgrids and energy strategies; Use robots effectively
Prescriptive maintenance; Hannover Messe 2017 recap; Reduce welding errors
The cloud, mobility, and remote operations; SCADA and contextual mobility; Custom UPS empowering a secure pipeline
Infrastructure for natural gas expansion; Artificial lift methods; Disruptive technology and fugitive gas emissions
Mobility as the means to offshore innovation; Preventing another Deepwater Horizon; ROVs as subsea robots; SCADA and the radio spectrum
Research team developing Tesla coil designs; Implementing wireless process sensing
Commissioning electrical systems; Designing emergency and standby generator systems; Paralleling switchgear generator systems
Natural gas engines; New applications for fuel cells; Large engines become more efficient; Extending boiler life

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
The maintenance journey has been a long, slow trek for most manufacturers and has gone from preventive maintenance to predictive maintenance.
Featured articles highlight technologies that enable the Industrial Internet of Things, IIoT-related products and strategies to get data more easily to the user.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.
Maintenance Manager; California Oils Corp.
Associate, Electrical Engineering; Wood Harbinger
Control Systems Engineer; Robert Bosch Corp.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me