Mitigating arc flash hazards in medium-voltage switchgear

12/09/2013


Maintenance mode on solid state protective relays: A maintenance switch is now available in most medium-voltage circuit breakers as a means of temporarily adjusting the settings of the solid state protective device during scheduled maintenance such that arcing faults are cleared without delay, while still maintaining the desired settings for coordination with downstream protective devices. Figure 4 shows the application and the benefit of a maintenance switch in 4.16 kV switchgear. Figure 4 A shows the single-line diagram of the switchgear. Figure 4 B shows the time-current curves of the main and the feeder breaker relays. The calculated arcing fault current is 8.44 kA for a bus fault. The fault is cleared by the main breaker in 1.303 sec (including the breaker time), the incident energy is 12 cal/cm2, and the HRC level is 3. 

Figure 4: Diagram A shows a single-line diagram of a medium-voltage distribution system. Diagram B shows the benefit of using a maintenance switch. Courtesy: CDM Smith

When the maintenance switch is engaged, the main breaker relay’s instantaneous setting is reduced from 80 (16,000 A) to 30 (6,000 A), below the expected arcing fault current. The arcing fault will now be cleared in 0.015 sec, the incident energy is reduced to 1.2 cal/cm2, and the HRC level is reduced from 3 to 1. 

Figure 4: Diagram A shows a single-line diagram of a medium-voltage distribution system. Diagram B shows the benefit of using a maintenance switch. Courtesy: CDM SmithWhile using the maintenance switch, plant supervisors must enforce an error-proof method of ensuring that the maintenance switch is disengaged after the scheduled maintenance work is completed. Otherwise, there will be nuisance tripping of the main breaker. 

Arc flash protective relays: Light emitted by the arc can be used to detect an arcing fault instead of current sensing. This is the principle of operation of arc flash protective relays now being marketed by some companies in the U.S. The result is the same as that of the maintenance switch except that no human action is necessary. Arcing inside the switchgear enclosure is detected by either a photoelectric receptor or a length of fiber-optic cable. The input is given to a single-function or a multifunction electronic protective relay, which can trigger instantaneous tripping of the breaker. This method is independent of the magnitude of the arcing fault current and can detect arcing in the early stage of its development. One company claims that the detection takes place in 1.0 msec. These relays have not gained wide acceptance yet, but they surely present a better way of detecting arcing and immediate tripping than current sensing. 

Figure 5: This diagram shows a typical high-speed grounding switch application. Courtesy: CDM SmithArc-resistant switchgear: In extreme cases, severe arcing in enclosed equipment can cause tremendous pressure buildup and may result in an explosion. The explosion will relieve the pressure buildup but will not quench or terminate the arc, which will proceed to cause thermal damage to the bus bars and enclosures until it is cleared by circuit breakers. This is the most probable scenario that resulted in several low-voltage and medium-voltage switchgear being completely gutted by internal arcing. Arc resistant switchgear is available that is structurally strong and has means of relieving the pressure buildup. The means consist of louvers and vents in the back of the enclosure, away from the operators, to exhaust the rapidly expanding air.

There are many environments in which the extra expense of the arc resistant switchgear is justifiable. In many industries, the additional cost is much lower than the cost of repair, downtime, compensations, and litigation. 

Crowbar methods: A radically different method of dealing with arcing faults is what is known as the “crowbar” method. This method is well known in Europe and is recognized as a viable method in medium-voltage switchgear by the International Electrotechnical Commission Standard 62271-200. Unfortunately, no U.S. standard has yet been developed as a guideline for the application of this method. Essentially, the crowbar method consists of high-speed detection of arcing, intentional creation of a 3-phase bolted fault, and clearing of the bolted fault by the circuit breaker. The bolted fault is created by a grounding switch. The circuit voltage is brought to zero and the arc collapses. In the U.S., this method is marketed as a high-speed grounding switch (see Figure 5). Arcing is detected by an optical sensor. An electronic relay energizes an actuator, which closes the 3-phase grounding switch, thus creating a 3-phase bolted fault. The bolted fault is sensed by the system protective relaying and the circuit breaker is tripped. Another company is marketing a scheme in which, instead of creating a bolted fault, a second arc is created inside a confined and mechanically strong drum-like enclosure. This second arc being parallel with the fault arc serves the same purpose as the bolted short-circuit. 

Figure 6: The photo shows a typical remote operator panel for a 4,160 V switchgear unit. Courtesy: CDM SmithRemote operating panels: Safety of personnel from arc flash hazards can be ensured by providing remote operating panels from which all manual operation of the switchgear can be performed. The remote panels must be located at a safe distance from the switchgear or in a separate room. If space is available for the remote panels, the equipment itself is not expensive. All circuit breakers in the switchgear must be electrically operated. In addition, a motor-operated draw-out mechanism must be provided. All breaker control switches, auto/manual switches, indicator lamps, ammeter and voltmeter switches, meters, and an operator interface terminal can be installed in the remote operator panel (see Figure 6).

Calculating arcing faults

The following equations are used in calculating the arcing fault current: 

For system voltage under 1 kV: 

            lg(Ia) = K + 0.662 lg(Ibf) + 0.0966 V + 0.000526 G + 0.5588 V (lg Ibf) – 0.00304 G (lg Ibf

Where:

lg = the log10 (logarithm to the base 10)

Ia = arcing current, kA

K = -0.153 or open air arcs; -0.097 for arcs-in-a-box

Ibf = bolted three-phase available short-circuit current (symmetrical rms), kA

V = system voltage, kV

G = conductor gap, mm 

For system voltage greater than or equal to 1 kV:

            lg (Ia) = 0.00402 + 0.983 lg (Ibf

The incident energy E is calculated using the following equation: 

            E = 4.184 Cf En (t/0.2) ( 610x/Dx

Where:

E = incident energy, J/cm2

Cf = calculation factor

 = 1.0 for voltages above 1 kV

 = 1.5 for voltages at or below 1 kV

En = incident energy normalized

t = arcing time, sec

x = distance exponent

D = working distance, mm 

The normalized incident energy is given by the following equation: 

            lg En = k1 + k2 + 1.081 lg(Ia) + 0.0011 G 

In these equations, the values of G and the exponent x depend on the voltage and the type of equipment. For example, for 480-V switchgear, G = 32 mm and x = 1.473. For other voltages and other equipment, Table D.7.2 of IEEE Std. 1584 gives the values of G and x.

Source: IEEE Std. 1584-2002 IEEE Guide for Performing Arc-Flash Hazard Calculations


Syed M. Peeran is a senior electrical engineer at CDM Smith. He has more than 20 years of experience in the design of electrical distribution systems. For several years, he was an adjunct professor at Northeastern University, Boston, and is a member of the Consulting-Specifying Engineer editorial advisory board.


<< First < Previous 1 2 3 Next > Last >>

CARLOS , Non-US/Not Applicable, Mexico, 05/21/14 06:58 PM:

verry good articles
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
2016 Engineering Leaders Under 40; Future vision: Where is manufacturing headed?; Electrical distribution, redefined
Strategic outsourcing delivers efficiency; Sleeve bearing clearance; Causes of water hammer; Improve air quality; Maintenance safety; GAMS preview
World-class maintenance: The three keys to success - Deploy people, process and technology; 2016 Lubrication Guide; Why hydraulic systems get hot
Flexible offshore fire protection; Big Data's impact on operations; Bridging the skills gap; Identifying security risks
The digital oilfield: Utilizing Big Data can yield big savings; Virtualization a real solution; Tracking SIS performance
Getting to the bottom of subsea repairs: Older pipelines need more attention, and operators need a repair strategy; OTC preview; Offshore production difficult - and crucial
Applying network redundancy; Overcoming loop tuning challenges; PID control and networks
Driving motor efficiency; Preventing arc flash in mission critical facilities; Integrating alternative power and existing electrical systems
Package boilers; Natural gas infrared heating; Thermal treasure; Standby generation; Natural gas supports green efforts

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
This article collection contains several articles on the vital role that compressed air plays in manufacturing plants.
This article collection contains several articles on the Industrial Internet of Things (IIoT) and how it is transforming manufacturing.
This article collection contains several articles on strategic maintenance and understanding all the parts of your plant.
click me