Mitigating arc flash hazards in medium-voltage switchgear

12/09/2013


Duration of the arc

The duration of the arcing fault has a direct impact on the available incident energy. Arcing faults, like all other faults, must be detected and cleared by the first upstream circuit protective device. Therefore, the total arcing time is the total clearing time of the device, which, in the case of circuit breakers, equals the sum of the relay or sensor time and the breaker operating time. Relay or sensor time depends on the setting of the relay and the fault current. Typical circuit breaker operating times are listed in Table 2.

Source: IEEE Standard 1584-2002, Table 1

Mitigating hazards in medium-voltage equipment

There are many reasons why mitigation of arc flash hazards is of greater concern in medium-voltage equipment. First, medium-voltage switchgear occupies a higher hierarchical position in most radial distribution systems. Consequently, medium-voltage protective devices must be set to operate with a greater time delay to allow the low-voltage downstream devices to operate first in the event of a fault. Second, medium-voltage circuit breakers take more time to clear a fault than do low-voltage circuit breakers. In addition, the arcing fault current is very nearly equal to the bolted fault current. The increased arcing time and the higher arcing fault current contribute to greater incident energy and HRC. Because of the higher hierarchical position, de-energizing the medium-voltage switchgear for maintenance work is often not an option because it would shut down a significant portion of a facility. Therefore, one must look seriously at various methods of reducing the HRC. 

Design alternatives that can reduce arc flash hazards in medium-voltage systems include:

  • Use of smaller and higher impedance transformers
  • Bus differential and transformer differential protection
  • Current limiting fuses
  • Maintenance switch
  • Arc flash detecting relays
  • Arc-resistant switchgear
  • Crowbar methods
  • Remote operator panels.

The engineer must evaluate each option and select one or more most appropriate for a given system.

Figure 2: This diagram shows bus differential protection of medium-voltage switchgear. Courtesy: CDM SmithSmaller and higher impedance transformers: Most distribution systems are radial. Instead of specifying one large-capacity, medium-voltage transformer to feed the plant, two or more small-capacity, higher-impedance transformers can be used to supply individual areas of the plant. The idea is to reduce the available bolted fault current and the arcing fault current. Reducing the arcing fault current does not necessarily increase the fault clearing time. Relays can be set to minimize the fault clearing time. For example, a 3,000 kVA, 13.8 kV/4.16 kV transformer with typically 6% reactance would be a source of 6,940 A of short-circuit current at the 4.16 kV switchgear, while a 1,500 kVA transformer with 8% reactance can supply only 2,603 A of short-circuit current. The incident energy in the event of an arcing fault would be reduced by 62%. However, the capital cost and the space requirements for two 1,500 kVA transformers would be more than those for the 3,000 kVA transformer. In addition, higher transformer impedance would cause a greater steady-state voltage drop and a greater transient voltage dip during motor starting. These drawbacks must be evaluated and weighed against the advantage of reduced arc flash incident energy. 

Bus differential, transformer differential protection: Differential protection is a means of clearing the fault inside the zone of protection without intentional delay and without interfering with the overcurrent protective device coordination. The zone of protection is defined by the location of the current transformers (see Figure 2). Another common instance where differential protection would considerably reduce the arc flash hazard is shown in Figure 3A. Transformer primary protection is provided by a fuse. The fuse is chosen to provide adequate protection to the transformer and to permit the magnetizing inrush current. A fault at the line side of the secondary main breaker must be cleared by the primary fuse only. Often the HRC for the line side fault in this situation is excessive. If the fuse is replaced by a circuit breaker and differential protection is provided, the line side fault would be cleared without delay and the HRC can be brought down considerably (see Figure 3B). 

Figure 3: Diagram A shows a system in which a line-side fault creates excessive incident energy. Diagram B shows how differential protection for this system reduces the incident energy Courtesy: CDM SmithFigure 3: Diagram A shows a system in which a line-side fault creates excessive incident energy. Diagram B shows how differential protection for this system reduces the incident energy Courtesy: CDM Smith

Current limiting fuses: Current limiting fuses have the capability to clear faults within a half cycle (less than 0.0083 sec) in addition to limiting the let-through current. Current limiting action of the fuse results from the melting of the silver filaments inside a sand filling inside the fuse, thus creating multiple arcs inside. Great reduction in the available incident energy is possible because of the fast clearing of the fault. However, this is possible only when the fault current lies in the current-limiting range of the fuse characteristic. For example, in a 15 kV 300 A current limiting fuse, the current limiting action takes place for fault current in excess of 6,000 A. The benefit of current limiting fuses can be realized only if the available short-circuit current is in excess of 6,000 A. One must also recognize that it is difficult to coordinate current limiting fuses with downstream protective devices. 



CARLOS , Non-US/Not Applicable, Mexico, 05/21/14 06:58 PM:

verry good articles
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
The true cost of lubrication: Three keys to consider when evaluating oils; Plant Engineering Lubrication Guide; 11 ways to protect bearing assets; Is lubrication part of your KPIs?
Contract maintenance: 5 ways to keep things humming while keeping an eye on costs; Pneumatic systems; Energy monitoring; The sixth 'S' is safety
Transport your data: Supply chain information critical to operational excellence; High-voltage faults; Portable cooling; Safety automation isn't automatic
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Maintaining low data center PUE; Using eco mode in UPS systems; Commissioning electrical and power systems; Exploring dc power distribution alternatives
Synchronizing industrial Ethernet networks; Selecting protocol conversion gateways; Integrating HMIs with PLCs and PACs
Why manufacturers need to see energy in a different light: Current approaches to energy management yield quick savings, but leave plant managers searching for ways of improving on those early gains.

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.