Mechatronics: Electromechanical manufacturing systems

A tightly integrated mechatronic system can reduce the machine footprint, shorten programming time, and eliminate dedicated hardware controllers.

05/13/2013


Beckhoff Automation showed its XTS (eXtended Transport System), an example of mechatronics design, at PackExpo, in Chicago, October 2012. CFE Media image by Mark T. HoskeAutomation architectures can use one controller, one network, and one software platform across one system architecture. Such a design can integrate a programmable logic controller (PLC), motion control, safety, communications, and robotics on an industrial PC (IPC) or embedded PC. With this approach, users can replace multiple expensive controllers and “black box” hardware with a more powerful centralized system. For machine and robot builders, this means engineering cost savings with process optimizations, and a significantly smaller footprint on the plant floor.

A key driving force for a unified architecture is a modern multi-core processor technology. As multi-core technology progresses, so too does the capability to add even more functionality. The rise of more integrated automation systems has also produced some very interesting innovations in the area of mechatronics.

Mechatronics demonstration

A modular linear drive that serves as a motion control system is exactly the kind of mechatronic advancement that takes full advantage of more powerful PC-based controllers and one architecture. A machine equipped with such a motion control system would leverage one standard controls architecture (PC-based control), one software platform, and one industrial Ethernet network.

By combining linear motor technology on a continuous motion track with straight and curved track segments, a machine designer can configure topologies that suit numerous applications. Typically, a linear motion system has a linear magnetic track and one active carrier. Motion is constrained to back-and-forth actions on one plane. A modular track, on the other hand, is like an inverse linear motor and is specially engineered for multiple carriers. The track contains the active coils and encoding, while each mover is composed of a passive set of magnets with encoder flag and roller wheels. The simple design delivers outstanding performance. Mechanically driven continuous motion, such as from belts or chains, is out-performed by the modular linear motion system since each mover’s position is controlled individually and can be adjusted with great precision on the fly. Movers can have positioning accuracies of +/-25 µm at 1.5 m/s and a positioning repeatability of less than 10 µm at mover standstill.

Control software can abstract complex underlying control principles, to enable a controls engineer to program against the movers’ absolute position. This means movers are positioned using the same software function blocks as traditional rotary axes. Complex motion tasks are relatively easy to implement, such as electronic gearing and computer-aided motion (CAM) tables between movers or between the movers and external axes like those found on conveyors.

Integrated motion, robotics

Circling back to robotics, it is also possible to pair a full robot system with the mover solution and have the automation software run on one industrial PC. This was demonstrated at Hannover Fair 2013, integrating a delta-style robot performing pick-and-place actions coordinated with the movers at high speed. This PC-based mechatronics approach can streamline automation systems for assembly and material handling applications.

Overall, such a mover system represents a highly efficient way for machine builders and manufacturers to integrate a high-performance mechatronic solution into designs that leverage the same controller, the same software environment, and the same network as the other automation and controls equipment on the machine. A tightly integrated mechatronic system can go a long way for engineers to reduce the machine footprint, shorten programming time, and eliminate dedicated hardware controllers.

- Matt Lecheler is motion specialist at Beckhoff Automation. Edited by Mark T. Hoske, content manager, CFE Media, Control Engineering, mhoske@cfemedia.com.

ONLINE

Read "Products use mechatronic design for manufacturing systems" below.

www.beckhoffautomation.com/xts 

Beckhoff Automation YouTube video of the XTS at 2013 Hannover Fair (about 30 sec into the video)



No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
Hannover Messe 2016: Taking hold of the future - Partner Country status spotlights U.S. manufacturing; Honoring manufacturing excellence: The 2015 Product of the Year Winners
Inside IIoT: How technology, strategy can improve your operation; Dry media or web scrubber?; Six steps to design a PM program
World-class manufacturing: A recipe for success: Finding the right mix for a salad dressing line; 2015 Salary Survey: Manufacturing slump dims enthusiasm
Getting to the bottom of subsea repairs: Older pipelines need more attention, and operators need a repair strategy; OTC preview; Offshore production difficult - and crucial
Digital oilfields: Integrated HMI/SCADA systems enable smarter data acquisition; Real-world impact of simulation; Electric actuator technology prospers in production fields
Special report: U.S. natural gas; LNG transport technologies evolve to meet market demand; Understanding new methane regulations; Predictive maintenance for gas pipeline compressors
Warehouse winter comfort: The HTHV solution; Cooling with natural gas; Plastics industry booming
Managing automation upgrades, retrofits; Making technical, business sense; Ensuring network cyber security
Designing generator systems; Using online commissioning tools; Selective coordination best practices

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
This article collection contains several articles on the vital role that compressed air plays in manufacturing plants.
This article collection contains several articles on the Industrial Internet of Things (IIoT) and how it is transforming manufacturing.
click me