Manufacturer focus: Designing labs, research buildings

Labs and research facilities house sensitive equipment and must maintain very rigid standards. Two manufacturers provide insights.

05/28/2013


Rick Hermans, Applications Director, Daikin McQuay. Courtesy: Dalkin McQuayVictor Neuman, Health Care/Lab Engineer, Schneider Electric. Courtesy: Schneider Electric

Participants

Rick Hermans, Applications Director, Daikin McQuay

Victor Neuman, Health Care/Lab Engineer, Schneider Electric

http://www.schneider-electric.com

 


CSE: What tools or knowledge do engineering schools need to provide young engineers in order to successfully specify or design systems for labs? 

Daikin McQuay: Engineering schools must provide students with the fundamental physics, psychrometrics, thermodynamics, and heat transfer knowledge as it applies to HVAC in general. Architectural engineering schools provide more practical skills in how to put HVAC systems together in concept for laboratory applications, specifically with respect to ventilation and the relationship between hood exhaust, make-up air, and static pressure control.

Schneider Electric: I started in lab design in 1983 when I was hired by the visionary lab planner Earl Walls, who passed away in the last year. He was a proponent of lab "modularity." The only constant of scientific research is change. Teaching modularity in design allows laboratory building to adapt to changes in the building which are needed to account for advances in scientific methods.

CSE: What are some common missteps that engineers might make on a laboratory project? Any tips you can provide? 

Schneider Electric: In lab pressurization control, there is a common misstep of locating the variable air volume (VAV) duct with its pitot flow sensors too close to the takeoff from or to the supply duct or exhaust duct. Flow accuracy of this pitot sensor is not crucial in office buildings but it is vitally important to laboratory pressurization controls. While more accurate sensors are recommended, if you are using pitot flow sensors in your lab, it is imperative that there be at least three duct diameters of straight duct at the inlet of the pitot and one duct diameter of straight duct at the exit of the pitot flow sensor. Many engineers feel that straight duct is not necessary when using venturi valves. However, our work with commissioning agents have made us very aware that even with venturi valves it may be required to have a length of straight duct for the commissioner to insert a removable pitot tube in order to certify the venturi valve's performance.

Daikin McQuay: Too many designs are overly complicated. They use exotic equipment and controls when more simple designs will suffice. Labs are special, to be sure, but they can be solved with simple designs that are understandable, effective, and efficient. One tip would be to pay attention to the building envelope, especially the interior walls which are critical elements in maintaining static pressure control between spaces.

CSE: Please describe a recent lab project you’ve worked on—share problems you’ve encountered, how you’ve solved them, and aspects of the project you’re especially proud of. 

Daikin McQuay: One past project was interesting and instructional from an academic perspective. The lab spaces were laid out in 10-ft modules with moveable partitions. The ventilation had to be flexible to accommodate various future revisions of lab space along these modules. The solution was a common vertical plenum space which served both as an air recirculation corridor and a utility corridor with connections of utilities in the same 10-ft intervals. 

Schneider Electric: Schneider Electric recently completed a major animal breeding facility in Asia that was particularly complex. The engineer had specified that the entrance airlocks to each major animal holding room were to have five cascading pressure levels. This was accomplished to everyone's satisfaction with a cooperative effort of the consulting engineer, owner, commissioning agent, and Schneider Electric as the building automation provider. In addition, the system was required to monitor and log pressure readings at each point every second.

CSE: When designing a lab that is part of a multi-use building (such as in a hospital or university building), what unique challenges do you have?

Schneider Electric: The challenge in a university lab is balancing the open environment of a university with the security needed for scientific research. Scientists appreciate large open plan labs, but this is a challenge when planning the airflow containment and pressurization control.

Daikin McQuay: If a lab is not a single, purpose-built structure, you are constrained by the architecture of the other functions in the building. Since labs have unique ventilation requirements, you spend a lot of time trying to accomplish those ventilation designs in an architecture not meant for them. The most obvious of these is the fume hood exhaust system.

CSE: Describe your involvement in a recent integrated project delivery (IPD) lab project or research facility. 

Daikin McQuay: The role was as owner’s representative. The duties were to write requests for proposal and to assist in the selection of the IPD team members, negotiating the common contract, and providing owners input on the design development. Since the lab was so unique that neither the owner nor the design team had ever done one before, the design process was a journey of discovery that couldn’t have been accomplished with any other project delivery process.


<< First < Previous 1 2 3 Next > Last >>

No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
World-class maintenance: The three keys to success - Deploy people, process and technology; 2016 Lubrication Guide; Why hydraulic systems get hot
Your leaks start here: Take a disciplined approach with your hydraulic system; U.S. presence at Hannover Messe a rousing success
Hannover Messe 2016: Taking hold of the future - Partner Country status spotlights U.S. manufacturing; Honoring manufacturing excellence: The 2015 Product of the Year Winners
The digital oilfield: Utilizing Big Data can yield big savings; Virtualization a real solution; Tracking SIS performance
Getting to the bottom of subsea repairs: Older pipelines need more attention, and operators need a repair strategy; OTC preview; Offshore production difficult - and crucial
Digital oilfields: Integrated HMI/SCADA systems enable smarter data acquisition; Real-world impact of simulation; Electric actuator technology prospers in production fields
Improving flowmeter calibration; Selecting flowmeters for natural gas; Case study: Streamlining assembly systems using PC-based control; CLPM: Improving process efficiency, throughput
Putting COPS into context; Designing medium-voltage electrical systems; Planning and designing resilient, efficient data centers; The nine steps of designing generator fuel systems
Warehouse winter comfort: The HTHV solution; Cooling with natural gas; Plastics industry booming

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
This article collection contains several articles on the vital role that compressed air plays in manufacturing plants.
This article collection contains several articles on the Industrial Internet of Things (IIoT) and how it is transforming manufacturing.
This article collection contains several articles on strategic maintenance and understanding all the parts of your plant.
click me