Machine Safety: Design a safer machine with risk assessments

Understand why and how to conduct a risk assessment on a machine to improve the design by increasing safety and productivity. Note 6 reasons why to do risk assessments, and 8 steps to conduct a risk assessment.

08/20/2013


Sometimes, old habits are hard to change. What is so difficult about understanding why and how to conduct a risk assessment on a machine? See these six reasons to conduct a risk assessment and eight steps to doing a machine risk assessment.

Let’s start with why risk assessments should be conducted.

Here are six reasons to conduct risk assessments.

  1. It’s simply a good business practice. 
  2. You’re performing your responsibility for due diligence.
  3. Your overall liability as a business is the same, regardless.
  4. It’s part of your existing business safety culture.
  5. Industry consensus standards require risk assessments.
  6. It’s the law – OSHA!

If the above is reasonably clear, doesn’t it seem plausible that everyone would be conducting risk assessments without hesitation? Well, it’s my opinion that old habits are hard to change! Haven’t we all seen situations in recent years where any or all of the example reasons above have either been MIA (missing in action) or just simply misunderstood. Having said that, we’ve also seen numerous case examples of companies considered “best-in-class” incorporating risk assessments into their business. Isn’t this because, in part, they’ve concluded that there is a cost associated with not being best-in-class?

The most frequent excuse I hear from companies not conducting risk assessments is – because risk assessments are added costs to our business. Yet, don’t all six of the reasons above have an avoidable cost associated with them that can shutter a business? Best-in-class companies say: yes!

Secondly, “how” to conduct a risk assessment?

There are several answers to this question. However, it begins with a real simple concept which in my experience is not universally understood. The key word is “process.” A risk assessment is not a snap shot, a check mark, and generally is not a single hazard. There are some folks out there incorporating the new ISO consensus standard, ISO 13849-1; 2008, who mistakenly believe the risk graph in informative annex A is considered a risk assessment. No, this only has to do with the safety-related parts of a control system where a control function is deemed necessary to reduce risk. And, every hazard on a machine isn’t usually mitigated via a control function.

So, a risk assessment is called a process because it takes multiple steps to conduct. Of all the standards, white papers, and training classes I’ve encountered, they all seem to average eight process steps to properly conduct a risk assessment on a machine.

8 steps to properly conduct a machine risk assessment are:

  1. Prepare and research limits of the assessment
  2. Identify all tasks and hazards
  3. Access initial risk(s)
  4. Risk reduction actions
  5. Access residual risk(s)
  6. Acceptability of residual risk(s)
  7. Validate solution(s)
  8. Provide documentation

Therefore, a risk assessment is a process of logical steps designed to systematically identify and evaluate any and all hazards associated with a machine. And, not until any and all hazards are identified via a risk assessment can designs be implemented to mitigate those hazards making it a safer machine.

If all companies understood everything mentioned above, wouldn’t we see a majority of them fully incorporating risk assessment into their businesses as a core function?

Has this presented you with any new perspectives? Add your comments or thoughts to the discussion by submitting your ideas, experiences, and challenges in the comments section below.

Related articles:

Contact: http://www.jbtitus.com for “Solutions for Machine Safety”.



Brad , KY, United States, 12/05/13 06:56 AM:

Good Info.
This should be a monthly column.
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
Safer human-robot collaboration; 2017 Maintenance Survey; Digital Training; Converting your lighting system
IIoT grows up; Six ways to lower IIoT costs; Six mobile safety strategies; 2017 Salary Survey
2016 Top Plant; 2016 Best Practices on manufacturing progress, efficiency, safety
Mobility as the means to offshore innovation; Preventing another Deepwater Horizon; ROVs as subsea robots; SCADA and the radio spectrum
Future of oil and gas projects; Reservoir models; The importance of SCADA to oil and gas
Big Data and bigger solutions; Tablet technologies; SCADA developments
Automation modernization; Predictive analytics enable open connectivity; System integration success; Automation turns home brewer into brew house
Commissioning electrical systems; Designing emergency and standby generator systems; Paralleling switchgear generator systems
Natural gas for tomorrow's fleets; Colleges and universities moving to CHP; Power and steam and frozen foods

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.
Motion control advances and solutions can help with machine control, automated control on assembly lines, integration of robotics and automation, and machine safety.
Compressed air plays a vital role in most manufacturing plants, and availability of compressed air is crucial to a wide variety of operations.
Maintenance Manager; California Oils Corp.
Associate, Electrical Engineering; Wood Harbinger
Control Systems Engineer; Robert Bosch Corp.
click me