Liquid transformers--the right stuff

In this installment, Guentert gives more reasons for the differences in reliability between liquid transformers and dry-types.

05/23/2012


 

Elbow-Type MOV’s Connected Directly to Primary Windings

We left off last week discussing some of the possible reasons for differences in reliability of liquid transformers versus dry-types, when primary windings are switched by vacuum circuit breakers (all my personal opinions, again). Here are more reasons:

 

1. On all data center projects I’m involved with, we very carefully watch the installation details of the “system,” not just the transformer itself. Using the “loadcenter” concepts discussed earlier, moving the transformations into very close proximity to the loads has the effect of not only reducing high costs of the large secondary feeders, but generally has the added benefit of LENGTHENING the primary feeders, creating “Nature’s Own Snubber” by adding shunt capacitance to the shielded MV cables.

 

2. Then, we always connect a very good set of MOV surge arrestors DIRECTLY to the primary winding terminals. The capacitance of the cables flattens out the extremes of (dv/dt) rate-of-rise, to allow the arrestors to do their job in clamping the surge voltage as the transient develops across the windings. (Many consulting engineers still place arresters on the load runback connections of upstream vacuum breakers – at the source ends of the cables - where they are ineffective. Maximum effectiveness is when the arresters are connected directly to the transformer primary windings.  Remember, this is not a transient voltage entering the windings from upstream at the vacuum breaker.  Instead, the transient is developed within and across the winding itself, and this event occurs with such extreme speed that the winding insulation is damaged before the voltage wave can travel all the way back upstream through the cables to the arresters at the breaker.)

 

3. And, also importantly, we use only vacuum breakers from manufacturers who have performed their due diligence through R&D to ensure that the metallurgy of the power contacts inside their vacuum bottles has the “right stuff” to minimize current chopping and re-ignition phenomena during switching operations.

 

Typical Fan-Cooled, Ventilated Dry-Type Transformer4. Almost all modern VPI dry-type transformers are ventilated and air-cooled, usually by simple convection, sometimes with supplemental forced air from cooling fans. Either way, air is drawn into the lower vents, then either convects or is blown by fans directly over the transformer windings. The problem is, as that happens, microscopic particles of airborne contaminants are deposited on the primary windings, reducing the overall dielectric strength of the insulation system over time, and encouraging partial discharges during large transient events. If a ventilated transformer begins its life with a primary BIL of 110  kV, the BIL can degrade significantly within a few years, unless there is very frequent cleaning and maintenance. (It’s my experience that the majority of the failures I investigated occurred between one and three years after the failed unit had been initially placed into service. When I asked the question, I learned that practically none of them had been ever been maintained and cleaned.)

 

Liquid transformers, on the other hand, have their windings immersed in clean fluid within a sealed tank, so external airborne contaminants and moisture can’t get to the windings. (Use of an epoxy cast resin transformer also eliminates much of this problem.)



No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Leaders Under 40 program features outstanding young people who are making a difference in manufacturing. View the 2013 Leaders here.
The new control room: It's got all the bells and whistles - and alarms, too; Remote maintenance; Specifying VFDs
2014 forecast issue: To serve and to manufacture - Veterans will bring skill and discipline to the plant floor if we can find a way to get them there.
2013 Top Plant: Lincoln Electric Company, Cleveland, Ohio
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Bring focus to PLC programming: 5 things to avoid in putting your system together; Managing the DCS upgrade; PLM upgrade: a step-by-step approach
Balancing the bagging triangle; PID tuning improves process efficiency; Standardizing control room HMIs
Commissioning electrical systems in mission critical facilities; Anticipating the Smart Grid; Mitigating arc flash hazards in medium-voltage switchgear; Comparing generator sizing software

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.