Linearity in measuring devices

10/15/2010


Dear Control Engineering: Sometimes I see the term “linearity” used in reference to measuring devices. What does this mean?

Linearity reflects the ability of a sensor to respond to changes in a measured variable in the same way across the full range. If you’ve seen old pressure gages, they often have uneven scales where the divisions are larger at one end of the scale than the other. This compensates for non-linearities in the flexing of the bourdon tube. The same concepts apply to electronic devices, whether they are process instrments such a flowmeters, or discrete devices such as proximity sensors.

Let’s use a temperature sensor as an example. It has to convert a temperature to a voltage (thermocouple) or resistance (RTD, thermistor). As the temperature changes, the voltage or resistance has to change with it. If a device has high linearity, the amount of voltage or resistance change will be the same per change in temperature across the full range of the device.

In the case of a type K thermocouple, for example, when in roughly the middle of its measuring range (500 °C) a change of 10 °C will cause a change of 0.427 mV. If the device is truly linear, that change in voltage per degree will be the same over the entire measuring range. As a matter of fact, it isn’t. At the low extreme (-250 °C) a 10 °C change is 0.017 mV. At the opposite extreme of 1,370 °C, a 10 °C change is 0.340 mV.

Thermistor resistance curve.Thermistors are generally regarded as non-linear. In an article The Challenges of Temperature Sensing, we included this graph of a typical thermistor response curve. What the graph shows is that at the low end of the range, a small change in temperature causes a large change in resistance. However the opposite is the case at the high end. The range of highest linearity for this device is roughly between -20 and 20 °C.

If you buy a temperature measuring device, or any other type of electronic sensor for that matter, the electronics in the transmitter will be designed to compensate for the non-linearities of the sensing element. You probably won’t even know that they’re there. The manufacturer will limit the effective range of the device such that it will cut off the worst areas at the extremes. If the behavior of the sensor is not predictable and repeatable beyond certain points, those areas should be excluded.

Peter Welander, pwelander(at)cfemedia.com



No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Leaders Under 40 program features outstanding young people who are making a difference in manufacturing. View the 2013 Leaders here.
The new control room: It's got all the bells and whistles - and alarms, too; Remote maintenance; Specifying VFDs
2014 forecast issue: To serve and to manufacture - Veterans will bring skill and discipline to the plant floor if we can find a way to get them there.
2013 Top Plant: Lincoln Electric Company, Cleveland, Ohio
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Bring focus to PLC programming: 5 things to avoid in putting your system together; Managing the DCS upgrade; PLM upgrade: a step-by-step approach
Balancing the bagging triangle; PID tuning improves process efficiency; Standardizing control room HMIs
Commissioning electrical systems in mission critical facilities; Anticipating the Smart Grid; Mitigating arc flash hazards in medium-voltage switchgear; Comparing generator sizing software

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.