Lab research develops record-breaking solar cell performances

Researchers at the University of California, Berkeley, along with scientists at the DOE's Lawrence Berkeley National Laboratory have developed record-breaking sunlight-to-electricity conversion efficiencies in solar cells.


Theoretical research by scientists with the U.S. Dept. of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) has led to record-breaking sunlight-to-electricity conversion efficiencies in solar cells. The researchers showed that, contrary to conventional scientific wisdom, the key to boosting solar cell efficiency is not absorbing more photons but emitting more photons.

“A great solar cell also needs to be a great Light Emitting Diode,” says Eli Yablonovitch, the Berkeley Lab electrical engineer who led this research. “This is counter-intuitive. Why should a solar cell be emitting photons? What we demonstrated is that the better a solar cell is at emitting photons, the higher its voltage and the greater the efficiency it can produce.”

Yablonovitch holds joint appointments with Berkeley Lab’s Materials Sciences Division and the University of California (UC) Berkeley, where he is the James and Katherine Lau Chair in Engineering, and also directs the NSF Center for Energy Efficient Electronics Science. He is the corresponding author of a paper describing this work titled “Intense Internal and External Fluorescence as Solar Cells Approach the Shockley-Queisser Efficiency Limit.” Co-authoring this paper with Yablonovitch were Owen Miller of Berkeley Lab, and Sarah Kurtz, at the National Renewable Energy Laboratory.

In their paper, Yablonovitch, Miller and Kurtz describe how external fluorescence is the key to approaching the theoretical maximum efficiency at which a solar cell can convert sunlight into electricity. This theoretical efficiency, called the Shockley-Queisser efficiency limit (SQ Limit), measures approximately 33.5-percent for a single p-n junction solar cell. This means that if a solar cell collects 1,000 Watts per square meter of solar energy, the most electricity it could produce would be about 335 Watts per square meter.

Calculations by Miller, who is a member of Yablonovitch’s research group, showed that the semiconductor gallium arsenide is capable of reaching the SQ Limit. Based on this work, a private company co-founded by Yablonovitch, Alta Devices Inc., has been able to fabricate solar cells from gallium arsenide that have achieved a record conversion efficiency of 28.4 percent.

“Owen Miller provided an accurate theory on how to reach the SQ Limit that for the first time included external fluorescence efficiency,” Yablonovitch says. “His calculations for gallium arsenide showed that external fluorescence provides the voltage boost that Alta researchers subsequently observed.”  

Solar or photovoltaic cells represent one of the best possible technologies for providing an absolutely clean and virtually inexhaustible source of electricity. However, for this dream to be realized, solar cells must be able to efficiently and cost-competitively convert sunlight into electricity. They must also be far less expensive to make.

The most efficient solar cells in commercial use today are made from monocrystalline silicon wafers and typically reach a conversion efficiency of about 23-percent. High grade silicon is an expensive semiconductor but is a weak collector of photons. Gallium arsenide, although even more expensive than silicon, is more proficient at absorbing photons, which means much less material is needed to make a solar cell.

“Gallium arsenide absorbs photons 10,000 times more strongly than silicon for a given thickness but is not 10,000 times more expensive,” says Yablonovitch. “Based on performance, it is the ideal material for making solar cells.”

Past efforts to boost the conversion efficiency of solar cells focused on increasing the number of photons that a cell absorbs. Absorbed sunlight in a solar cell produces electrons that must be extracted from the cell as electricity. Those electrons that are not extracted fast enough, decay and release their energy. If that energy is released as heat, it reduces the solar cell’s power output. Miller’s calculations showed that if this released energy exits the cell as external fluorescence, it would boost the cell’s output voltage.

“This is the central counter-intuitive result that permitted efficiency records to be broken,” Yablonovitch says. 

As Miller explains, “In the open-circuit condition of a solar cell, electrons have no place to go so they build up in density and, ideally, emit external fluorescence that exactly balances the incoming sunlight. As an indicator of low internal optical losses, efficient external fluorescence is a necessity for approaching the SQ Limit.”

Using a single-crystal thin film technology developed earlier by Yablonovitch, called “epitaxial liftoff,” Alta Devices was able to fabricate solar cells based on gallium arsenide that not only smashed previous solar conversion efficiency records, but can be produced at well below the cost of any other solar cell technology. Alta Devices expects to have gallium arsenide solar panels on the market within a year.

“The SQ Limit is still the foundation of solar cell technology,” says Yablonovitch. “However, the physics of light extraction and external fluorescence are clearly relevant for high performance solar cells.”

Yablonovitch believes that the theoretical work by he and his co-authors, in combination with the performance demonstrations at Alta Devices, could dramatically change the future of solar cells.

“We’re going to be living in a world where solar panels are very cheap and very efficient,” Yablonovitch says.

- Edited by Chris Vavra, Consulting-Specifying Engineer, 

No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
A cool solution: Collaboration, chemistry leads to foundry coat product development; See the 2015 Product of the Year Finalists
Raising the standard: What's new with NFPA 70E; A global view of manufacturing; Maintenance data; Fit bearings properly
Sister act: Building on their father's legacy, a new generation moves Bales Metal Surface Solutions forward; Meet the 2015 Engineering Leaders Under 40
Cyber security cost-efficient for industrial control systems; Extracting full value from operational data; Managing cyber security risks
Drilling for Big Data: Managing the flow of information; Big data drilldown series: Challenge and opportunity; OT to IT: Creating a circle of improvement; Industry loses best workers, again
Pipeline vulnerabilities? Securing hydrocarbon transit; Predictive analytics hit the mainstream; Dirty pipelines decrease flow, production—pig your line; Ensuring pipeline physical and cyber security
Upgrading secondary control systems; Keeping enclosures conditioned; Diagnostics increase equipment uptime; Mechatronics simplifies machine design
Designing positive-energy buildings; Ensuring power quality; Complying with NFPA 110; Minimizing arc flash hazards
Building high availability into industrial computers; Of key metrics and myth busting; The truth about five common VFD myths

Annual Salary Survey

After almost a decade of uncertainty, the confidence of plant floor managers is soaring. Even with a number of challenges and while implementing new technologies, there is a renewed sense of optimism among plant managers about their business and their future.

The respondents to the 2014 Plant Engineering Salary Survey come from throughout the U.S. and serve a variety of industries, but they are uniform in their optimism about manufacturing. This year’s survey found 79% consider manufacturing a secure career. That’s up from 75% in 2013 and significantly higher than the 63% figure when Plant Engineering first started asking that question a decade ago.

Read more: 2014 Salary Survey: Confidence rises amid the challenges

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.