Isn't there enough real intertia around?

Mechatronics in Design: Adding inertia to a system, that is, adding mechanical mass, is not usually desirable as it slows down system response. Electronic intertia through acceleration feedback improves performance.

08/17/2010


Keven C. CraigThe word inertia in everyday use suggests resistance to change and an unwillingness to act. This is hardly something we need in engineering practice to solve the urgent problems we all face. Even in a motion-system context, the idea of adding inertia to a system, i.e. adding mechanical mass, is not usually desirable as it slows down system response.

One familiar exception is adding a flywheel to an engine or machine to smooth out speed fluctuations. Two of the most important benefits of feedback control are command following and disturbance rejection. Usually the focus of attention in a control system is on command following, but in many situations the ability of a system to reject disturbances, i.e., have high dynamic stiffness, is paramount.

Mechatronics Page 58 A common industry motion-control system has three cascaded feedback loops: motor current, velocity, and position.

For a motor-velocity feedback control system, increasing inertia J reduces the high-frequency disturbance response, i.e., makes the system dynamically stiffer at high frequencies. But the closed-loop command-following is degraded. How do we add inertia without degrading command-following performance? A common industry motion-control system has three cascaded feedback loops: motor current, velocity and position. Newton’s 2nd Law says torque is proportional to angular acceleration, so if we can measure or estimate acceleration, we can scale the acceleration by inertia J to give units of torque, and then by 1/KT, the inverse of the
motor torque constant, to give current.

This is then multiplied by a gain KAFB, and subtracted from the current command
to the current-control loop. KAFB has a similar effect to increasing inertia J; hence the alternate name electronic inertia. To ensure that the command following performance remains the same, the velocity control gains must be scaled by the same factor (1 + KAFB).

The velocity command response is unaffected by the value of KAFB because the loop gain increases in proportion to the inertia, producing no net effect. So why are we adding electronic inertia? The real benefit of acceleration feedback is that the disturbance response is improved by acceleration feedback through the entire frequency range in proportion to the term (1 + KAFB), as shown by the block diagram and transfer function and frequency-response plot.

This improvement cannot be realized significantly above the bandwidth of the current loop, as the acceleration feedback signal cannot improve the system at frequencies where the current loop cannot inject current. Of course, a robust acceleration feedback signal is required. This can be accomplished through differentiation of a position sensor signal and filtering or through the use of an observer.

MechatronicsFor mechatronics engineers, here is one situation where adding
inertia is highly desirable. In this virtual world we live in, electronic inertia is almost
expected. Peter Schmidt, Rockwell Automation, and Robert Lorenz, University of Wisconsin at Madison, have done foundational work in this area and their work should be consulted.

For more information, go to bit.ly/adSOlI. This appears in August 2010 Control Engineering and Plant Engineering.

Kevin C. Craig, Ph.D., holds the Robert C. Greenheck Chair in Engineering Design and is professor of Mechanical Engineering, College of Engineering, Marquette University.



No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
2016 Product of the Year; Diagnose bearing failures; Asset performance management; Testing dust collector performance measures
Safety for 18 years, warehouse maintenance tips, Ethernet and the IIoT, GAMS 2016 recap
2016 Engineering Leaders Under 40; Future vision: Where is manufacturing headed?; Electrical distribution, redefined
SCADA at the junction, Managing risk through maintenance, Moving at the speed of data
Safety at every angle, Big Data's impact on operations, bridging the skills gap
The digital oilfield: Utilizing Big Data can yield big savings; Virtualization a real solution; Tracking SIS performance
Applying network redundancy; Overcoming loop tuning challenges; PID control and networks
Driving motor efficiency; Preventing arc flash in mission critical facilities; Integrating alternative power and existing electrical systems
Package boilers; Natural gas infrared heating; Thermal treasure; Standby generation; Natural gas supports green efforts

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
This article collection contains several articles on the vital role of plant safety and offers advice on best practices.
This article collection contains several articles on the Industrial Internet of Things (IIoT) and how it is transforming manufacturing.
This article collection contains several articles on strategic maintenance and understanding all the parts of your plant.
click me