Inverter topologies: Voltage-source or current-source

In very basic terms, a variable-frequency drive (VFD) consists of three sections, moving from the drive’s input to output. A rectifier (or converter) changes ac input to dc, followed by a dc link that serves as an energy storage circuit, and then an inverter switches dc back to variable frequency ac output.


In very basic terms, a variable-frequency drive (VFD) consists of three sections, moving from the drive’s input to output. A rectifier (or converter) changes ac input to dc, followed by a dc link that serves as an energy storage circuit, and then an inverter switches dc back to variable frequency ac output. Among different ways to categorize VFDs, configuration of the inverter section is an important one—namely, current-source inverter (CSI) and voltage-source inverter (VSI).

One distinguishing characteristic is the energy storage section between converter and inverter. VSI drives use capacitive energy storage, while CSI drives use inductive energy storage in their respective dc links for voltage and current. Another topology of current-source drives is the load-commutated inverter (LCI), which also employs a dc link inductor, but relies on commutation by the connected motor (or load) via switching direct current to the motor windings. This contrasts with a standard CSI drive where a line-commuted rectifier and self-commutated inverter are typical.

VSI drives work with both induction and synchronous motors, some CSI drives also work with induction and synchronous motors, but LCI drives are limited to only synchronous motors.

According to TM GE Automation Systems (TMEIC GE), voltage-source inverter is the only choice for drives above a certain power rating, compared to older technology current-source inverter drives. “In addition, any drive load that requires high torques and high response, such as a steel mill drive, cannot use current-source because of its much slower response due to the inductive source,” says Tim Russell, senior system engineer. “CSI drives are best suited for pumps and fans.”

LCI drives are intended for very large power output, and in that sense are an exception to the overall power limit of current sourcing. LCI drives are advantageous for ratings up to 50,000 hp (37,500 kW) or even higher and for control of synchronous motors, explains Rick Hoadley—principal consulting applications engineer, MV drives—at ABB Inc. “LCI drives operate at a slightly leading power factor, which allows devices in their inverter section to be load commutated,” he says. “This eliminates induction motors, which can’t run with a leading power factor.” LCI drives are available from ABB and Siemens.

Power-switching devices

Power-switching devices constitute another difference between CSI and VSI drives. Whether a power device is current- or voltage-switched determines its applicability to the type of drive. These power semiconductors range from the venerable silicon-controlled rectifier (SCR) and gate turn-off (GTO) thyristor to newer symmetrical gate-commutated thyristor (SGCT) and injection-enhanced gate transistor (IEGT).

TM GE Automation Systems provides the following attributes and trade-offs among some of these devices:

  • Current- switched devices—SGCT and integrated gate-commutated thyristors (IGCT)—require many more parts in firing/gate control than voltage-switched devices, such as IEGT and insulated-gate bipolar transistors (IGBT), which are available in LV and MV versions.
  • Voltage-switched devices—IGBT and IEGT—have much lower switching losses than current-switched devices.
  • Conduction losses are nearly equal for equivalent voltage- and current-rated devices: SGCT, IGCT vs. IGBT, IEGT.
  • Voltage-switched devices allow higher switching rates and provide better output waveforms.

Also read:

Why Choose Medium-Voltage Drives?

What is medium voltage? 

Transformerless medium-voltage drives perspective

Frank J. Bartos, P.E., is Control Engineering consulting editor. Reach him at

No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
Safety for 18 years, warehouse maintenance tips, Ethernet and the IIoT, GAMS 2016 recap
2016 Engineering Leaders Under 40; Future vision: Where is manufacturing headed?; Electrical distribution, redefined
Strategic outsourcing delivers efficiency; Sleeve bearing clearance; Causes of water hammer; Improve air quality; Maintenance safety; GAMS preview
SCADA at the junction, Managing risk through maintenance, Moving at the speed of data
Safety at every angle, Big Data's impact on operations, bridging the skills gap
The digital oilfield: Utilizing Big Data can yield big savings; Virtualization a real solution; Tracking SIS performance
Applying network redundancy; Overcoming loop tuning challenges; PID control and networks
Driving motor efficiency; Preventing arc flash in mission critical facilities; Integrating alternative power and existing electrical systems
Package boilers; Natural gas infrared heating; Thermal treasure; Standby generation; Natural gas supports green efforts

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
This article collection contains several articles on the vital role of plant safety and offers advice on best practices.
This article collection contains several articles on the Industrial Internet of Things (IIoT) and how it is transforming manufacturing.
This article collection contains several articles on strategic maintenance and understanding all the parts of your plant.
click me