Insights on multi-core processors

Intel says multi-core processor technology addresses numerous industrial control challenges by delivering greater ‘raw’ and real-time performance. This was driven by a need for critical applications to respond quickly and predictably to real-time events. Link to 3 other Control Engineering articles in this four-part series.

01/22/2011


2nd Generation Intel Core ProcessorsIndustrial systems have traditionally been built from a collection of separate platforms, each running its own operating system on independent hardware. This was driven by a need for critical applications to respond quickly and predictably to real-time events. However, such task isolation in hardware comes at a significant expense in terms of space, excess heat generation, and greater management complexity for a production facility. (Link to three other Control Engineering articles in this four-part series, at bottom of this posting.)

Multi-core processors (MCPs) can consolidate various functional requirements of an automation system, including control, safety, visualization, and network security onto a single board. For an example of this consolidation, let’s look at a hard real-time process, such as a robot arm for assembly operations. Using an MPC, motion control of the robot arm can run on one core of the MCP, while a second core running Microsoft Windows can update a human-machine interface (HMI) display and also connect to industrial Ethernet.

This consolidation scenario is becoming almost commonplace today, driven by benefits of embedded systems that formerly required multiple hardware platforms now shrinking to a single hardware platform.

Other drivers for MCPs’ adoption into industrial systems are:

  • Bounded determinism to ensure predictable behavior, which is a requirement of hard real-time automation systems. Faster CPU cycles can increase the amount of work done within a given cycle time; however, bounded determinism is still necessary to ensure that a stable and accurate system can be deployed regardless of the compute performance of that system. Bounded determinism thus ensures that real-time tasks run with guaranteed, repeatable real-time responses.
  • Dedicated CPU cores that work with specific operating systems positively impact interrupt latency, compared to traditional platforms that must share a CPU with nondeterministic tasks. By being able to guarantee low interrupt latencies, real-time performance of control loops can be improved.
  • Decreased clock jitter. MCPs can deliver improved clock jitter performance. In a system where jitter (that is, spread of variations in response to an event) becomes a considerable percentage of cycle time, it adversely affects stability and quality of the control algorithm. This can be especially relevant for naturally unstable systems such as motion controllers.
  • Expanded resources for scaling. By adapting a digital signal processor to run on dedicated cores of a multi-core CPU, machine builders gain advantages in having expanded resources to more easily scale for more complex algorithms.
  • Optimize contention for resources. With a multi-core CPU, contention for resources such as pipelines and cache is optimized, real-time interrupt latencies are reduced, and control-loop cycle times execute with very high precision, which as we know are all fundamental factors for best-in-class industrial applications.

www.intel.com

- Ian Gilvarry, is strategic marketing manager for Industrial Automation, Intel Corp. [NASDAQ: INTC] - Edited by Frank J. Bartos, P.E., a Control Engineering contributing content specialist. Reach him at braunbart@sbcglobal.net.

Related articles:

- Multi-core processors: Software key to success - Multi-thread parallel computing software and appropriate user tools advance the promise of high performance and power efficiency from multi-core processors.

- Growing applications for multi-core processors - Multi-core processors have wide industrial application potential—from vision inspection systems to motion control—as developers increasingly implement the technology, initially in high-end systems.

- Computing Power: Multi-Core Processors Help Industrial Automation - Two or more independent execution cores on one microprocessor chip can match—or exceed—single-core chip performance by running at lower frequencies and using less power. Different software programming is required to obtain full benefits.



No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
2016 Engineering Leaders Under 40; Future vision: Where is manufacturing headed?; Electrical distribution, redefined
Strategic outsourcing delivers efficiency; Sleeve bearing clearance; Causes of water hammer; Improve air quality; Maintenance safety; GAMS preview
World-class maintenance: The three keys to success - Deploy people, process and technology; 2016 Lubrication Guide; Why hydraulic systems get hot
Flexible offshore fire protection; Big Data's impact on operations; Bridging the skills gap; Identifying security risks
The digital oilfield: Utilizing Big Data can yield big savings; Virtualization a real solution; Tracking SIS performance
Getting to the bottom of subsea repairs: Older pipelines need more attention, and operators need a repair strategy; OTC preview; Offshore production difficult - and crucial
Applying network redundancy; Overcoming loop tuning challenges; PID control and networks
Driving motor efficiency; Preventing arc flash in mission critical facilities; Integrating alternative power and existing electrical systems
Package boilers; Natural gas infrared heating; Thermal treasure; Standby generation; Natural gas supports green efforts

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
This article collection contains several articles on the vital role that compressed air plays in manufacturing plants.
This article collection contains several articles on the Industrial Internet of Things (IIoT) and how it is transforming manufacturing.
This article collection contains several articles on strategic maintenance and understanding all the parts of your plant.
click me