Increase system energy efficiency with motor and drive tools

Lenze L-Force Drive Solution Designer (DSD) software design tools, L-force MF ac motors, and the energy-saving VFCeco (Voltage Frequency Control economic) feature in Lenze 8400 inverter drives can reduce energy use and pollution, conserve resources, and lower energy costs without sacrificing productivity.

07/30/2012


The Lenze L-Force Drive Solution Designer (DSD) is a powerful set of engineering and configuration tools to help machine engineers set the right course in the design and development phase of motion systems. This new process tool from Lenze helps design engineers select the right drives and motors for optimal machine performance. DSD software enables the exact determination of the process variables and evaluation of the components and their optimum coordination. DSD sizes components based on user-entered machine torque, time, and motion profiles, and generates data specifying where and when and by which means efficient savings can be achieved. The patented Energy Performance Certificate presents the energy consumption of the main drivetrain components calculated by differentiated loss models.

Lenze's Drive Solution Designer and Existing software requires recalculations to compare scenarios. DSD works within a concise and comprehensible graph format clearly showing usage by each component, with a comparative analysis and payback for multiple design scenarios. DSD streamlines the design and sizing process and converts the drive energy savings into kilowatts used, fuel cost, and wasted CO2. DSD provides reliable data by quickly calculating solution variants on the basis of mechanical performance figures. These values are then used to determine the energy costs and CO2 emissions. By comparing solutions, the user can identify the optimum combination of components and the best motion sequence for the drive task. Optimized mechanics and reduced inertias and frictions fundamentally reduce the power requirement to be met by the drive.

Efficient motors

The most widely used class IE1 motors have been phased out and prohibited in some new installations. DSD is a particularly timely tool as machine markets transition to higher efficiency motors. Lenze developed the compact MF series of motors to help design engineers avoid increases in frame sizes and thus complex design adaptations for the migration to Class IE2 ac motors. New to the market, the MF series is designed for open and closed loop controlled operation with frequency inverters. The L-force MF ac motors are developed for a higher nominal speed than conventional 4-pole motors.

Due to its features, the MF motor aligns perfectly with the machine concept. Bridging the gap between conventional servo motors and high-efficiency IE2 Class ac motors, the new L-force MF three-phase ac motors have nominal frequency of 120 Hz with a speed-setting range of 1-24. The MF motor incorporates high ratio gearboxes to achieve higher output speeds of up to 3,500 rpm. With efficiency of 94% to 98%, the right-angle and axial gearboxes ensure almost loss-free energy conversion. Low inertia translates into less energy consumption during speed changes. During rated operation, MF three-phase motors surpass the minimum efficiency of Class IE2 motors but are unaffected by IEC 60034-30. MF can be specified up to two sizes smaller than IE2 motors of equivalent power. Another major plus of the MF motor is its multifunction capability. Applications that may have required multiple conventional motors (of varying frame sizes and power ranges) can now be satisfied with only one MF motor, thereby reducing costly motor inventory.

Lenze L-Force MF ac motors offer an economical solution to close the large performance gap between conventional ac motors and servo motors. Courtesy: Lenze AmericasVariable frequency drive, frequency inverter

Using a frequency inverter to automatically adjust motor voltage produces better efficiency in partial load operations with standard three-phase ac motors. Normally, in partial load operation, three-phase ac motors are still supplied with a greater magnetizing current than actually required by the operating conditions. Additional energy savings can be yielded in combination with high-efficiency gearboxes and inverter drives with energy-saving VFCeco (Voltage Frequency Control economic).

Built in to the Lenze 8400 inverter drives, this energy-saving feature makes it possible to reduce energy consumption by up to 30%. Designed for centralized and decentralized frequency inverters, VFCeco senses load and torque, then adapts to partial loads by automatically reducing the magnetizing current of the motor to the actual requirement. VFCeco can be temporarily disabled for manual control or full load operation.

In the case of load changes (n-settling time < 1sec, for VFC < 0.5sec), VFCeco mode delivers better dynamic performance than other products on the market. In applications with long, extreme partial load phases, a voltage reduction enables the reduction of the average required power. That makes VFCeco particularly practical in applications with great partial load operation, low requirements with regard to the dynamic performance, and infrequent load changes, as commonly found in material handling roller conveyors, conveying belts, pumps, and fans.

Possibilities for increasing energy efficiency can be calculated and compared in DSD yielding a design template for an energy-efficient complete machine.

For more advice and two text tables, see: Adaptive tools, engineering can reduce drive system energy consumption.

- Mariusz Jamroz is senior OEM commercial engineer, Lenze Americas; edited by Mark T. Hoske, content manager CFE Media, Control Engineering, Plant Engineering, and Consulting-Specifying Engineer, mhoske(at)cfemedia.com.

http://www.lenzeamericas.com 



No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Leaders Under 40 program features outstanding young people who are making a difference in manufacturing. View the 2013 Leaders here.
The new control room: It's got all the bells and whistles - and alarms, too; Remote maintenance; Specifying VFDs
2014 forecast issue: To serve and to manufacture - Veterans will bring skill and discipline to the plant floor if we can find a way to get them there.
2013 Top Plant: Lincoln Electric Company, Cleveland, Ohio
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Bring focus to PLC programming: 5 things to avoid in putting your system together; Managing the DCS upgrade; PLM upgrade: a step-by-step approach
Balancing the bagging triangle; PID tuning improves process efficiency; Standardizing control room HMIs
Commissioning electrical systems in mission critical facilities; Anticipating the Smart Grid; Mitigating arc flash hazards in medium-voltage switchgear; Comparing generator sizing software

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.