How to specify an arc flash relay

03/28/2013


What to look for in an arc flash relay

The most important selection criteria are reaction time, trip reliability, avoidance of nuisance tripping, sensor design and installation, ease of use, and scalability and flexibility. 

  • Reaction time: The fastest possible trip times for available arc flash relays vary from less than 1 ms to about 9 ms. Because the idea is to limit energy by shortening the duration of the event, faster is better. The total time it takes for the fault to be cleared is the sum of the response time of the arc flash relay and the time it takes for the circuit breaker to open on a relay-trip input, which may be 50 ms.  
  • Trip reliability: The two main aspects of reliability are trip redundancy and system-health monitoring. An arc flash relay with redundant tripping has a secondary backup for its primary trip path logic that takes over in case of failure. The backup function is not influenced by any time delay programmed for the primary trip path. Since it is not dependent on input power to the relay, it can respond to an arc flash fault that occurs when powering up the system after a plant shutdown even before the unit’s microprocessor is fully operational (which may take 200 ms). To maintain full arc flash relay operation despite power interruptions, some arc flash relays have provision for battery backup. 
    Health monitoring makes sure the system is in good operating condition and should extend all the way from the light sensors to the output of the trip circuitry.
  • Avoidance of nuisance tripping: Most arc flash relays have fixed light thresholds between 8000 and 10,000 lux. Bright light—opening a switchgear cabinet to strong sunlight, a camera flash, or nearby welding—could cause a nuisance trip. A programmable time delay might prevent this from happening, but, as shown above, it is better to avoid delays as much as possible. A better alternative is to use an arc flash relay that accepts current transformer inputs; this way the unit can ignore a bright light that is not accompanied by a sudden current increase. The current inputs can also be used for overcurrent tripping without an arc, if desired. 
  • Sensor design and installation: Most arc flash relay installations use multiple fixed-point light sensors. It’s best to install enough to cover all accessible areas, even if policy is to only work on deenergized systems. At least one sensor should have visibility to an arc fault if a person blocks another sensor’s field of view. Light sensors may also be installed in other electrical cabinets and on panels that are subject to routine maintenance and repairs, such as those associated with MCCs. 
    Some arc flash relays can also work with fiber optic sensors that can range in length from 26 to 65 ft. This is a good way to make sure all areas are covered. However, long “open” fiber strands designed for light reception over their entire length should be used with caution. If an arc flash occurs at the far end of such a strand, then the light arriving at the detector end may not be sufficiently bright to cause a relay trip due to attenuation (db loss) along the fiber length. Some manufacturers avoid this problem by using interconnecting hardware with hardwired outputs from the interconnection and detector points back to the arc flash relay. Some products allow up to six light sensor inputs per relay, and up to four relays can be interconnected to act as a single unit. This means up to 24 light sensor inputs can be used to monitor an electrical equipment configuration.
  • Ease of use: It’s generally better to choose an arc flash relay that does not require field assembly, calibration, or advanced configuration before installing, simply to prevent errors in setup or configuration. Event-logging software, which is provided in some relays, also helps to make troubleshooting easier.
  • Scalability and flexibility: Some arc flash relay designs allow the interconnection of multiple devices, such as multiple relays, each with several sensors. This can be useful in situations such as an MCC that does not have a main breaker that can be relay-tripped. Here an arc flash relay in the MCC can trigger an arc flash relay in an upstream feeder cabinet to shut off the power. 

By understanding the application of arc flash relays and their selection considerations, building designers can design safer electrical systems and respond to OSHA and NFPA’s increased focus on arc flash hazards.


Justin Mahaffey is sales engineer for Littelfuse, where he helps customers improve uptime and worker electrical safety. His experience includes heavy industrial applications such as oil and gas drilling and electric power utilities. Early in his career, Mahaffey worked as both a test and product engineer.

References:

White, James, 2010. Exploding the Myths about Arc Flash, Plant Engineering, April 8, 2010


<< First < Previous 1 2 3 Next > Last >>

HORMAZ , IL, United States, 04/20/13 04:04 PM:

Small services do not have
relay operated circuit breakers, so how do you plan
to trip this breaker other than its normal function?
At what point does this type
of protection become mandatoty?
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Leaders Under 40 program features outstanding young people who are making a difference in manufacturing. View the 2013 Leaders here.
The new control room: It's got all the bells and whistles - and alarms, too; Remote maintenance; Specifying VFDs
2014 forecast issue: To serve and to manufacture - Veterans will bring skill and discipline to the plant floor if we can find a way to get them there.
2013 Top Plant: Lincoln Electric Company, Cleveland, Ohio
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Bring focus to PLC programming: 5 things to avoid in putting your system together; Managing the DCS upgrade; PLM upgrade: a step-by-step approach
Balancing the bagging triangle; PID tuning improves process efficiency; Standardizing control room HMIs
Commissioning electrical systems in mission critical facilities; Anticipating the Smart Grid; Mitigating arc flash hazards in medium-voltage switchgear; Comparing generator sizing software

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.