Herding robots

A new system combines simple control programs to enable fleets of robots — or other “multiagent systems” — to collaborate in unprecedented ways.


Writing a program to control a single autonomous robot navigating an uncertain environment with an erratic communication link is hard enough; write one for multiple robots that may or may not have to work in tandem, depending on the task, is even harder.

As a consequence, engineers designing control programs for "multiagent systems"—whether teams of robots or networks of devices with different functions—have generally restricted themselves to special cases, where reliable information about the environment can be assumed or a relatively simple collaborative task can be clearly specified in advance.

This May, at the International Conference on Autonomous Agents and Multiagent Systems, researchers from MIT's Computer Science and Artificial Intelligence Laboratory (CSAIL) will present a new system that stitches existing control programs together to allow multiagent systems to collaborate in much more complex ways. The system factors in uncertainty—the odds, for instance, that a communication link will drop, or that a particular algorithm will inadvertently steer a robot into a dead end—and automatically plans around it.

For small collaborative tasks, the system can guarantee that its combination of programs is optimal—that it will yield the best possible results, given the uncertainty of the environment and the limitations of the programs themselves.

Working together with Jon How, the Richard Cockburn Maclaurin Professor of Aeronautics and Astronautics, and his student Chris Maynor, the researchers are currently testing their system in a simulation of a warehousing application, where teams of robots would be required to retrieve arbitrary objects from indeterminate locations, collaborating as needed to transport heavy loads. The simulations involve small groups of iRobot Creates, programmable robots that have the same chassis as the Roomba vacuum cleaner.

Reasonable doubt

"In [multiagent] systems, in general, in the real world, it's very hard for them to communicate effectively," says Christopher Amato, a postdoc in CSAIL and first author on the new paper. "If you have a camera, it's impossible for the camera to be constantly streaming all of its information to all the other cameras. Similarly, robots are on networks that are imperfect, so it takes some amount of time to get messages to other robots, and maybe they can't communicate in certain situations around obstacles."

An agent may not even have perfect information about its own location, Amato says. For instance, it might not know which aisle of the warehouse its actually in. Moreover, "When you try to make a decision, there's some uncertainty about how that's going to unfold," he says. "Maybe you try to move in a certain direction, and there's wind or wheel slippage, or there's uncertainty across networks due to packet loss. So in these real-world domains with all this communication noise and uncertainty about what's happening, it's hard to make decisions."

The new MIT system, which Amato developed with co-authors Leslie Kaelbling, the Panasonic Professor of Computer Science and Engineering, and George Konidaris, a fellow postdoc, takes three inputs. One is a set of low-level control algorithms—which the MIT researchers refer to as "macro-actions"—which may govern agents' behaviors collectively or individually. The second is a set of statistics about those programs' execution in a particular environment. And the third is a scheme for valuing different outcomes: Accomplishing a task accrues a high positive valuation, but consuming energy accrues a negative valuation.

School of hard knocks

Amato envisions that the statistics could be gathered automatically, by simply letting a multiagent system run for a while whether it be in the real world or in simulations. In the warehousing application, for instance, the robots would be left to execute various macro-actions, and the system would collect data on results. Robots trying to move from point A to point B within the warehouse might end up down a blind alley some percentage of the time, and their communication bandwidth might drop some other percentage of the time; those percentages might vary for robots moving from point B to point C.

The MIT system takes these inputs and then decides how best to combine macro-actions to maximize the system's value function. It might use all the macro-actions; it might use only a tiny subset. And it might use them in ways that a human designer wouldn't have thought of.

Suppose, for instance, that each robot has a small bank of colored lights that it can use to communicate with its counterparts if their wireless links are down. "What typically happens is, the programmer decides that red light means go to this room and help somebody, green light means go to that room and help somebody," Amato says. "In our case, we can just say that there are three lights, and the algorithm spits out whether or not to use them and what each color means."

- Edited by CFE Media. See more Control Engineering robotics stories.

No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
Safety for 18 years, warehouse maintenance tips, Ethernet and the IIoT, GAMS 2016 recap
2016 Engineering Leaders Under 40; Future vision: Where is manufacturing headed?; Electrical distribution, redefined
Strategic outsourcing delivers efficiency; Sleeve bearing clearance; Causes of water hammer; Improve air quality; Maintenance safety; GAMS preview
SCADA at the junction, Managing risk through maintenance, Moving at the speed of data
Safety at every angle, Big Data's impact on operations, bridging the skills gap
The digital oilfield: Utilizing Big Data can yield big savings; Virtualization a real solution; Tracking SIS performance
Applying network redundancy; Overcoming loop tuning challenges; PID control and networks
Driving motor efficiency; Preventing arc flash in mission critical facilities; Integrating alternative power and existing electrical systems
Package boilers; Natural gas infrared heating; Thermal treasure; Standby generation; Natural gas supports green efforts

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
This article collection contains several articles on the vital role of plant safety and offers advice on best practices.
This article collection contains several articles on the Industrial Internet of Things (IIoT) and how it is transforming manufacturing.
This article collection contains several articles on strategic maintenance and understanding all the parts of your plant.
click me