Handling the World Wide Web

MECHATRONICS IN DESIGN: Fresh ideas on integrating mechanical systems, electronics, control systems, and software in design, defense systems, consumer products, manufacturing. Before the WWW, engineers were handling webs at astonishing speeds.

05/01/2010


Kevin C. Craig, Ph.D., is Robert C. Greenheck Chair in Engineering Design & Professor of Mechanical Engineering, College of Engineering, Marquette University.The word web means different things to different people. To some, web conjures up images of Spider Man with his astonishing web, while for most others, it is the pervasive World Wide Web. However, for many engineers, the word web brings to mind the pervasive and astonishing material web used in many processes that make the majority of the products we all use. Let’s explore this overlooked material-handling app1lication that is indispensable in so many diverse industries. And while we are doing that, let’s ask the question why there is a gap and time lag between the latest technological advances in web handling and actual industrial practice, an observation not unique to this application.

Academic rigor and the best practices of industry need to be merged in an understandable, usable way for innovation to occur and result in tangible advances.

The economic advantage of manufacturing a material continuously instead of in batches is clear. The inputs and throughputs to continuous manufacturing processes are usually webs. A web is defined as a long, thin, flexible material with negligible bending stiffness about two of its three axes. Major classes of web materials include film, foil, food, paper, nonwovens, rubber, textiles and composites of these. Materials range from centimeter-thick metals to micron-thick plastics, widths range from single thin strands to more than 10m, and line speeds range to more than 2,500 m/min.

The goal of web handling is getting a web through a machine as fast as possible with minimum damage and waste, while preserving the web’s properties. Web manufacturing forms the raw-material web (e.g., paper making, film extrusion, textile spinning), while web converting (e.g., coating, laminating, printing, sheeting) takes one or more web materials and permanently alters them in some fashion either by changing material properties or causing geometrical / physical changes.

MechatronicsWeb manufacturing and converting are often done by a combination of mostly art (trial-and-error) and a little bit of science, depending on the industry. However, all webs follow the same laws of physics — if we know the physics, we know the behavior. Web handling is an exact science with model-based design rules; all webs behave fundamentally the same way when pulled through a machine under tension. There even exists a wealth of literature and experts (e.g., D.H. Carlson, 3M Corp.; P.R. Pagilla, Oklahoma State University; and M.D. Weaver, Rockwell Automation) in this area. Monitoring and controlling web velocity and tension is a common web-handling challenge.

The use of a model-based design approach, rather than a trial-and-error design approach, is fundamental in modern mechatronic system design. Why is this approach not more widespread when applied to webs? There is a gap, and time lag, between the academic/research world and the world of industrial practice. More than 10 years ago, Dennis Bernstein wrote an article in the IEEE Control Systems Magazine entitled “On Bridging the Theory / Practice Gap.” It was timely then and even more so now. In this article, he outlines that both sides contribute to the problem.

So what needs to happen to bridge this gap? Academic rigor and the best practices of industry need to be merged in an understandable, usable way for innovation to occur and result in tangible advances. On the academic side, professors need to get out of their comfort zone and make each course — from freshman year through the graduate programs — not just a textbook course but an up-to-date fusing of academic rigor and best industrial practice with actual industry case studies as examples. Too hard, too challenging? This is what transformational engineering education is all about.

On the industrial side, companies need to recognize that their competitive advantage comes from an inspired, educated workforce and that should be their primary concern. Too often the training budget is the first to be cut with the view that technological advances somehow arrive with the morning newspaper. Too harsh an assessment? I do not think so, and I do not believe the rest of the world thinks so either.

- Kevin C. Craig, Ph.D., is Robert C. Greenheck Chair in Engineering Design & Professor of Mechanical Engineering, College of Engineering, Marquette University.

Visit the Mechatronics Zone for the latest mechatronics news, trends, technologies and applications: http://designnews.hotims.com/27744-542.



No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
Your leaks start here: Take a disciplined approach with your hydraulic system; U.S. presence at Hannover Messe a rousing success
Hannover Messe 2016: Taking hold of the future - Partner Country status spotlights U.S. manufacturing; Honoring manufacturing excellence: The 2015 Product of the Year Winners
Inside IIoT: How technology, strategy can improve your operation; Dry media or web scrubber?; Six steps to design a PM program
Getting to the bottom of subsea repairs: Older pipelines need more attention, and operators need a repair strategy; OTC preview; Offshore production difficult - and crucial
Digital oilfields: Integrated HMI/SCADA systems enable smarter data acquisition; Real-world impact of simulation; Electric actuator technology prospers in production fields
Special report: U.S. natural gas; LNG transport technologies evolve to meet market demand; Understanding new methane regulations; Predictive maintenance for gas pipeline compressors
Warehouse winter comfort: The HTHV solution; Cooling with natural gas; Plastics industry booming
Managing automation upgrades, retrofits; Making technical, business sense; Ensuring network cyber security
Designing generator systems; Using online commissioning tools; Selective coordination best practices

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
This article collection contains several articles on the vital role that compressed air plays in manufacturing plants.
This article collection contains several articles on the Industrial Internet of Things (IIoT) and how it is transforming manufacturing.
This article collection contains several articles on strategic maintenance and understanding all the parts of your plant.
click me