Get more from your data analysis: 5 tips to understanding the numbers

Maintenance managers who use CMMS for maintenance functions should know these key best practices to improve their asset reliability

12/13/2013


In order to make informed and financially sound decisions regarding their assets, most maintenance managers will use some form of computerized maintenance management system (CMMS) to drive their maintenance functions.

It is vital that such systems are properly configured and structured and that data has been accurately entered, because it is precisely that repair data that will allow for future data harvesting and analysis. This article outlines a number of the key best practices in CMMS data analysis that will enable managers to drive improvements in asset reliability.

Set clear parameters

Once sufficient historical data has been accumulated in the CMMS, decide on a time period to be examined, such as one year. Then, identify “bad actors” that have created the most difficulty regarding downtime, labor/material costs, number of repair incidents, and so on in relation to the assets that will be analyzed, following the concept of quick wins. Obtain input from operations and the maintenance performers who have the most interaction with the unit(s) being examined, as this will allow you to identify which equipment most needs the budget you have on hand. 

Proper planning: An example

Whatever assets are chosen for analysis, determine the maintenance indices as in the table below by comparing the hours reported as dedicated to PM work, planned repair hours, and unplanned repair hours. This can be done for the entire facility, a group of machines such as a production line, or a single asset. 

These percentages will vary depending on the type of industry involved. High-speed production will vary from assembly line work such as an automotive plant. Each plant’s goals should be established with realistic and attainable figures, which should be reviewed and updated on a regular basis as the facility progresses in its reliability improvements.

The data contained in the table below was taken from a high-speed production facility, and examines 52 weeks of data, as reported by a staff of 6 maintenance performers during one year of CMMS operations. In this instance 1,680 hours were netted out of the gross hours available to reflect holidays, sick time, and vacation for the staff, rendering 10,800 available man-hours for the year. 

Initially, the PM percentage goal should be in the 70%-75% range, planned repair work 15%-20%, and unplanned work 5%-10%. World-class maintenance strives for a 19:1 planned to unplanned hours ratio, but high-speed production may have a more realistic ratio of 9:1 due simply to the speed of the equipment.

In Figure 1, the planned (PM & planned repair) to unplanned/reactive hours ratio is 5.6:1, (3,149 + 1,054 ÷ 751), meaning for every 5.6 hours of planned work, the plant reported 1 hour of unplanned work. 

Figure 1: The planned (PM & planned repair) to unplanned/reactive hours ratio is 5.6:1, (3,149 + 1,054 ÷ 751), meaning for every 5.6 hours of planned work, the plant reported 1 hour of unplanned work. Courtesy: T.A. Cook Consultants, Inc.

Ensure reporting is accurate

If the combined planned and unplanned repair indices are greater than the time dedicated to PM, the figures are skewed and the reasons for this lopsidedness require an investigation, as this indicates more reactive than proactive work is taking place. Inaccurate reporting will impact the pool of hours being analyzed. Accurate reporting must be emphasized to the maintenance performers, as incorrect reporting will distort future analysis of a number of functions, including staffing requirements. Planning and scheduling can also be negatively impacted when updates are performed to the estimated times based on reported hours.     

Avoid duplication

One repair incident may consume multiple individuals across more than one shift. Each performer or shift documenting its participation on an individual basis will skew the repair data and give the appearance of more issues than are actually occurring, distort the MTBR figure, and artificially inflate labor and material costs.

One repair should be documented against the unit which contains all labor hours, material costs, and downtime. One incident equals one repair, period. When you have your car serviced, you don’t receive one invoice from each person who performed different functions. Don’t accept one repair event reported separately by more than two individuals.

The PM compliance for the unit being researched should also be examined. A unit whose reported PM compliance is high yet continues to experience a high rate of repairs requires additional evaluation to identify the gap. It could be the result of PMs with non-value-added content, inspections that are not aligned with the maintenance strategy of the unit, or potential false reporting. Determine why a unit with a 98% PM compliance would generate multiple repairs.

The reported factors for PM, planned, and unplanned repair hours can also define the man-weeks consumed for those categories and provide information on labor expenses, which can be the greatest amount of a unit’s overall costs. 

Use keywords to assess the situation

Once the units to be examined have been determined, generate a search in the CMMS for the unit(s) being analyzed and identify the recurring/repetitive repair incidents by keyword. This function may be already taking place if the facility has a competent planner/scheduler reviewing the data on a regular basis. These can then be entered into a Pareto chart, and a cumulative percentage can also be incorporated. This will supply the information on which machine, component, or area to concentrate the effort for analysis using the 80-20 rule.

Figure 2: In this example, the MTBF for this component calculates as 1.54 weeks, and the assigned PM tasking needs to be examined to ensure it reflects the operating demands placed on the component and that the inspections are correctly aligned. Courtesy:Using the example of the Chain in Figure 2, the MTBF for this component calculates as 1.54 weeks, and the assigned PM tasking needs to be examined to ensure it reflects the operating demands placed on the component and that the inspections are correctly aligned as to strategy, frequencies, work times, skills, verbiage, and so forth.

Cross-referencing back to the established inspections for the component, determine what checks and inspections are present for the Chains. How do the frequencies compare to the MTBR/MTBF? Are there issues identified in the repair descriptions that have no inspections established? Either adjust the existing data to reflect what is “real in the field” or add as appropriate.

Regardless of the type of analysis planned―fish-bone, wiebull, probability distribution, Pareto, failure effects mode analysis, or root cause analysis―it all begins with accurate data, extracted from a CMMS.

Essentially, it is your data and it is up to you to decide what to do with it. Whether it is utilized for value-added analysis or allowed to reside in history with no practical use is up to the user, and how effectively he or she wishes to drive improvements in the life and reliability of the assets.



No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Leaders Under 40 program features outstanding young people who are making a difference in manufacturing. View the 2013 Leaders here.
The new control room: It's got all the bells and whistles - and alarms, too; Remote maintenance; Specifying VFDs
2014 forecast issue: To serve and to manufacture - Veterans will bring skill and discipline to the plant floor if we can find a way to get them there.
2013 Top Plant: Lincoln Electric Company, Cleveland, Ohio
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Bring focus to PLC programming: 5 things to avoid in putting your system together; Managing the DCS upgrade; PLM upgrade: a step-by-step approach
Balancing the bagging triangle; PID tuning improves process efficiency; Standardizing control room HMIs
Commissioning electrical systems in mission critical facilities; Anticipating the Smart Grid; Mitigating arc flash hazards in medium-voltage switchgear; Comparing generator sizing software

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.