Friction Fundamentals and Accelerating Cars

In elections, it's always the economy; in engineering, it's the fundamentals

04/01/2010


ctl1004mech_x1.jpg

Friction may well be nature's most useful phenomenon. Without it, walking would be impossible and there would be no belt drives, no clutches, no wheels and no brakes. However, in machinery in which it is not the driving force, friction is an undesirable parasitic effect, generating heat, causing wear and wasting energy. So whether the goal is to reduce friction or enhance it, the proper combination of geometry, materials and lubrication must be employed in a design, i.e., a proper tribological approach. Tribology is the study of friction and wear and it has been estimated that the correct application of tribology throughout U.S. industry could save the country $500 billion annually.

 

 

 

ctl1004mech_x2.jpg

 

We have all read about the problems with uncontrolled acceleration of automobiles due to faulty accelerator pedals. Friction has been identified as the likely culprit, and the proper combination of geometry, materials and lubrication will likely lead to a solution. Why did this happen? It is too early to answer that question with any certainty, but I do know that most engineers, including mechanical engineers, do not fully understand the friction phenomenon. Failure to understand the fundamentals of such a pervasive physical effect is bound to lead design failures, some of which might be catastrophic.

 

Stick-slip motion is a common behavior associated with friction. A typical stick-slip experiment is to attach one end of a spring to a block sitting on an unlubricated horizontal surface. The other end of the spring is moved horizontally with a constant velocity. How will the block move? Of course it is highly dependent on the physical system parameters, but one possible outcome is stick-slip motion, as shown in the figure above. When the spring force exceeds Fstick, the mass accelerates, the spring elongates and the mass comes to rest. The process then repeats, creating the stick-slip behavior. A model used to describe the friction phenomenon must be able to show this behavior. The automobile accelerator pedal relies on a balance between the return-spring force and sliding friction, which could vary over time due to wear and contamination, to perform effectively and safely.

 

In the automobile electronic accelerator pedal assembly β€” electronic because when the gas pedal is depressed, a sensor tells the car to accelerate β€” it is essential to have a certain amount of friction to make it easier for the driver to maintain a steady throttle setting and also to reduce fatigue from pushing against the pedal return spring continuously. The designed-in friction is meant to simulate the intrinsic friction that is present in a traditional throttle cable as it passes through the cable housing. If the friction is excessive, the pedal return spring cannot return the pedal when the driver's foot is removed β€” the pedal sticks in the partially open position. Changing the friction characteristics will of course change the accelerator feel for the driver. In addition, if wear or contamination is allowed to occur and change the friction characteristics, not only will the pedal feel change, but the safe operation may change as well. The original problem and proposed solution for a major manufacturer, Toyota, can be viewed online at www.designnews.com .

 

The Toyota pedal assembly includes a shoe that rubs against an adjoining surface during normal pedal operation. As discussed above, due to the materials used, wear, and environmental conditions, these surfaces may, over time, begin to stick and slip instead of operating smoothly. In some cases, friction could increase to a point that the pedal is slow to return to the idle position or stick, leaving the throttle partially open. A solution is to insert a spacer that will reduce the friction between the friction shoe and the adjoining surface, thus eliminating the excess friction that can cause the pedal to stick.

 

In a mechanical design, a proper tribological approach, i.e., geometry, materials and lubrication, must be taken to ensure safety, performance and energy-efficient operation.

 

 

Author Information

Kevin C. Craig, Ph.D., Robert C. Greenheck Chair in Engineering Design & Professor of Mechanical Engineering, College of Engineering, Marquette University.

 



No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
Your leaks start here: Take a disciplined approach with your hydraulic system; U.S. presence at Hannover Messe a rousing success
Hannover Messe 2016: Taking hold of the future - Partner Country status spotlights U.S. manufacturing; Honoring manufacturing excellence: The 2015 Product of the Year Winners
Inside IIoT: How technology, strategy can improve your operation; Dry media or web scrubber?; Six steps to design a PM program
Getting to the bottom of subsea repairs: Older pipelines need more attention, and operators need a repair strategy; OTC preview; Offshore production difficult - and crucial
Digital oilfields: Integrated HMI/SCADA systems enable smarter data acquisition; Real-world impact of simulation; Electric actuator technology prospers in production fields
Special report: U.S. natural gas; LNG transport technologies evolve to meet market demand; Understanding new methane regulations; Predictive maintenance for gas pipeline compressors
Warehouse winter comfort: The HTHV solution; Cooling with natural gas; Plastics industry booming
Managing automation upgrades, retrofits; Making technical, business sense; Ensuring network cyber security
Designing generator systems; Using online commissioning tools; Selective coordination best practices

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
This article collection contains several articles on the vital role that compressed air plays in manufacturing plants.
This article collection contains several articles on the Industrial Internet of Things (IIoT) and how it is transforming manufacturing.
This article collection contains several articles on strategic maintenance and understanding all the parts of your plant.
click me