Expanding our tools to tighten the Skills Gap

Issues concerning the recruitment and retention of the up-and-coming science, technology, engineering and mathematics (STEM) workforce have begun to take center stage – with no shortage of evidence to support the claim.

08/26/2010


“Skills Gap”. These two words that have created a buzz and even paranoia throughout the manufacturing and engineering industries. Issues concerning the recruitment and retention of the up-and-coming science, technology, engineering and mathematics (STEM) workforce have begun to take center stage – with no shortage of evidence to support the claim.

It’s important to distinguish exactly why educating the up-and-coming STEM generation is vital to both of these industries and the economy at large. According to the U.S. Census Bureau, the first members of the Baby Boom generation will reach the age of 65 by 2011. As they begin to retire, there’s an increased concern that this transition will create an alarming skill gap; mainly because by 2025, Generation Y (ages 18-32) will make up 75% of the global workforce. To that point, the U.S. also faces a decrease in the number of students pursuing STEM degrees.

A 2008 report by the Aerospace Industries Association indicated that only 5% of all bachelor’s degrees in the United States are in engineering (roughly 70,000), compared to 20% in Asia, and this number is not enough to replenish the U.S. workforce moving forward. According to a 2010 study conducted by Aviation Week magazine, 19% of companies with 100,000+ workers are now at the retirement age; with the percentage jumping to more than 30% in 2012 and nearly 40% by 2014.

These escalating demographic transformations in the workforce, coupled with the lack of students pursuing STEM degrees, are an imminent call to action. This action must be taken by organizations in the manufacturing and engineering industries that will suffer the consequences of a skill gap and lack of qualified candidates, as well as government entities focusing on strengthening our education system.

A recent article in Newsweek quoted Deborah L. Wince-Smith, president of the Council of Competiveness, saying “Talent will be the oil of the 21st Century.” Considering that America ranks the fourth-most competitive nation after China, India and South Korea, it’s clear we need to reevaluate best practices for building up a competent pool of candidates. The same article also cited information from a report issued in late June by the Council on Competitiveness, which surveyed 400 global CEOs.

When asked what a key factor to drive manufacturing competitiveness was, the answer was innovation. So, how do we spur innovation? A big piece to solving the innovation puzzle begins with education and finding new, more efficient ways to train the up-and-coming engineers and providing those already in the workforce with the resources and tools they need to do things faster and smarter.

Tightening the skill gap from one generation to the next will play a quintessential role in this innovation endeavor. A report by the Sloan Center on Aging & Work at Boston College cited the importance of transferring job knowledge from one generation of workers to the next. There are a number of reasons for this, but as engineers know all too well, time is money and when the median cost of replacing employees in the manufacturing sector is $5,000/employee (compared with $3,000/employee in other sectors) it’s important to get the right candidate for the job the first time around; someone that can hit the ground running from day one.

Fortunately, there are organizations that aim to address issues related to skill and expertise gaps specifically for the STEM workforce. These organizations include Educate to Innovate and the inaugural USA Science & Engineering Festival, which aim to encourage more students to pursue STEM degrees and to help educators teach math and science in a way that is interesting, relevant and engaging. U.S. aerospace and defense companies are pitching in to lend a hand too, supporting these education programs that encourage students to pursue technical careers.

Training, resources, tools – these are all important ingredients for developing an innovative workforce. However, while not every industry requires intensive training and an ever-growing complex skill set in order to remain cutting-edge, the engineering industry does. Engineers need innovative tools and resources that allow them to succeed and grow, and preparing these workers at a collegiate level will positively impact the U.S. engineering and manufacturing industry as a whole.

Transferring knowledge from one generation to the next is a necessary step if we want to help eliminate a skill gap from these industries. In order to address this pending skill gap, we must focus on enabling workforce innovation by encouraging young students to pursue careers in these fields, utilizing the knowledge and skill-set expertise of veterans in this field with mentorship programs and investing in cutting-edge tools and resources that align with the ever-evolving engineering research and workflow process.

 

As Knovel’s president and CEO, Chris Forbes has piloted Knovel’s growth and strategic direction since founding the company in 2000. Knovel is a Web-based application integrating technical information with analytical and search tools to drive innovation and deliver answers engineers can trust. Knovel has more than 700 customers worldwide including 70 of the Fortune 500 companies and more than 300 leading universities.



The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
Doubling down on digital manufacturing; Data driving predictive maintenance; Electric motors and generators; Rewarding operational improvement
2017 Lubrication Guide; Software tools; Microgrids and energy strategies; Use robots effectively
Prescriptive maintenance; Hannover Messe 2017 recap; Reduce welding errors
The cloud, mobility, and remote operations; SCADA and contextual mobility; Custom UPS empowering a secure pipeline
Infrastructure for natural gas expansion; Artificial lift methods; Disruptive technology and fugitive gas emissions
Mobility as the means to offshore innovation; Preventing another Deepwater Horizon; ROVs as subsea robots; SCADA and the radio spectrum
Research team developing Tesla coil designs; Implementing wireless process sensing
Commissioning electrical systems; Designing emergency and standby generator systems; Paralleling switchgear generator systems
Natural gas engines; New applications for fuel cells; Large engines become more efficient; Extending boiler life

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
The maintenance journey has been a long, slow trek for most manufacturers and has gone from preventive maintenance to predictive maintenance.
Featured articles highlight technologies that enable the Industrial Internet of Things, IIoT-related products and strategies to get data more easily to the user.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.
Maintenance Manager; California Oils Corp.
Associate, Electrical Engineering; Wood Harbinger
Control Systems Engineer; Robert Bosch Corp.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me