Evolving wireless technology


During my post-RBI hiatus, I continued to pay attention to the areas I traditionally follow, at least to some extent. This included attending the Sensors Expo last month. Generally I go through that show pretty quickly since much of the equipment displayed is down at the component level and aimed more at OEMs than end users. Nonetheless, one of the items I reported on was from a Cores Electronic, a company that uses a Web enabled technology which allows a user to access data from a wireless device anywhere in the world via the Internet. That in itself is interesting on its own merits, but it got me into a conversation with Marius Ghercioiu, president of Cores Electronic. He had read an article I wrote in 2007 on the topic of wireless instrumentation and plant-level networks. He was particularly taken by comments on the three mutually-exclusive goals of wireless technology: bandwidth, determinism, and power consumption, and that no system can excel all three.

Ghercioiu reported that his approach has conquered that, or at least made the triangle smaller. As he puts it:

“The three capabilities can be made mutually non-exclusive if you redefine bandwidth from the implied vertical data flow between a tag/measurement node and the application running on PC or server, to a horizontal data flow between a federation of tags/measurement nodes to a cloud-based application, as graphically illustrated in the attached picture.

Cloud Instrument topologyBattery life is dictated by the frequency and length of tag/measurement node radio transmissions (and not by length of measurement/processing period), as shown by the following power measurement study done on a Tag4M WiFi tag:

1. Boot sequence takes 10-12 ms and has a mean current consumption of 10 mA;

2. Transmission period, where the tag may transmit up to six times inside of a communication period. Transmission time takes 5-10 ms and has a peak current consumption of 210 mA, which is also the wake-up period pick current consumption level;

3. Measurement period takes 0.5-5 ms and has a mean current consumption of 20 mA;

4. Receiving period, when the tag waits for AP acknowledgement, which takes 0-80 ms and has a mean current consumption of 30 mA; and

5. Sleep mode, where the tag current consumption is 3 µA.

The conclusion on battery power is that by reducing the frequency and length of tag/measurement node transmission periods, we preserve battery power. This does not conflict with determinism or with horizontal bandwidth.

Determinism can be controlled by moving those application algorithms that require minimized latency in tag/measurement node firmware. This does not conflict with preserving battery power or with horizontal bandwidth.

Bandwidth defines the amount of information per unit of time that comes from the tag/measurement node to the application software. Instead of requiring one tag/measurement node to send millions of data points to the server, as in data acquisition devices that scan multiple channels at MHz frequency in PC-based setups, we require the cloud-based application to ‘scan’ millions of small battery powered tags/measurement nodes.

The Cloud Instrument technology may very well change the way we do measurements in the future.”

This approach may not be suitable for every application, but it illustrates the point that wireless technology is improving. I suspect that going forward the three points will continue to be mutually exclusive, however they may get so close together that the differences won’t really matter. Still, I’m sure battery life can never be too long for some users.

No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
Safety for 18 years, warehouse maintenance tips, Ethernet and the IIoT, GAMS 2016 recap
2016 Engineering Leaders Under 40; Future vision: Where is manufacturing headed?; Electrical distribution, redefined
Strategic outsourcing delivers efficiency; Sleeve bearing clearance; Causes of water hammer; Improve air quality; Maintenance safety; GAMS preview
SCADA at the junction, Managing risk through maintenance, Moving at the speed of data
Safety at every angle, Big Data's impact on operations, bridging the skills gap
The digital oilfield: Utilizing Big Data can yield big savings; Virtualization a real solution; Tracking SIS performance
Applying network redundancy; Overcoming loop tuning challenges; PID control and networks
Driving motor efficiency; Preventing arc flash in mission critical facilities; Integrating alternative power and existing electrical systems
Package boilers; Natural gas infrared heating; Thermal treasure; Standby generation; Natural gas supports green efforts

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
This article collection contains several articles on the vital role of plant safety and offers advice on best practices.
This article collection contains several articles on the Industrial Internet of Things (IIoT) and how it is transforming manufacturing.
This article collection contains several articles on strategic maintenance and understanding all the parts of your plant.
click me