Evolving PID tuning rules


Model-based tuning

Note that the so-called model-free tuning just discussed is in fact partial or indirect model-based tuning. This is because the ultimate gain directly relates to the inverse of the process gain and ultimate period relates to the process dead time and lag. Significant progress in process model identification with commonly available identification tools makes it possible and easy to develop a process model and apply process-model parameters directly for model-based tuning. The first-order-lag-plus-dead-time model is the most common approximation for self-regulating processes (see Figure 3), and linear-integrator-with-gain-and-dead-time is used for integrating processes (see Figure 4). 

Figure 3 First Order Plus Dead Time Self-Regulating Process Response

[Figure 3. First Order Plus Dead Time Self-Regulating Process Response]

Figure 4 Integrating Process Response

[Figure 4. Integrating Process Response] 

There are many model-based tuning techniques; the most popular are Internal Model Control (IMC), Lambda tuning, and recently developed SIMple Control (SIMC) rules.

The most important feature of model-based tuning is its ability to shape control loop performance and robustness by using a tuning parameter. The tuning parameter relating to the speed of response is used to vary the trade-off between performance and robustness, coordinate response among loops, and achieve process control objectives (averaging level, tight control, etc.). In principle for self-regulating processes, the methods adjust the PID controller reset (or reset and rate) to match process dynamics and then adjust the controller gain to achieve the desired closed loop response. IMC and Lambda tuning have become popular because oscillation and overshoot are avoided, controllers are less sensitive to noise, and control performance can be specified in an intuitive way through the closed-loop time constant. However, load disturbance rejection is typically worse than in quarter-amplitude decay tuning. The SIMC rules were developed to improve model-based tuning performance, primarily for disturbance rejection when desired. SIMC rules provide a higher integral gain (smaller reset time) for the processes with a small dead time than Lambda or IMC tuning rules, by applying this formula: 


As it follows from the formula, for the processes with a small dead time and large time constant with a properly selected λ to satisfy the condition τ > 4 (τd + λ), reset time is set as Ti = 4(τd + λ) , instead of Ti = τ, as in Lambda or IMC tuning.

Controller proportional gain Kp is calculated in the same way as for the Lambda or IMC tuning:


For the integrating process controller, parameters are:

It is interesting to notice that optimum tuning rules geared toward minimum integrated absolute error (IAE) advanced by F. Greg Shinskey are only a particular case of SIMC tuning rules for the integrating process:


In fact, such formulas are very close to what is obtained when using  λ= 0. This results in the following gain and reset time:

Formulas which do not apply filter λ are therefore for a maximum performance with no designed robustness margin and no possibility of setting a desired loop performance. Therefore, using such formulas is particularly undesirable when process parameters may change causing loop instability. Instead, simple formulas provide the ability to design loop performance and robustness in a required way.

Which brings us back to…

Historically, PID controller tuning started from observing a loop with proportional action on the verge of stability, and then decreasing proportional gain to get stable operation and calculating integral and derivative terms from the loop oscillation period. In fact, all above indicators are related in some way to the process model parameters. Therefore, if all process model parameters are explicitly known, it is possible to satisfy tuning requirements in the best way. There are several model-based tuning rules which give a simple and intuitively understandable method to set a desired loop performance and robustness for a given process.

Willy K. Wojsznis is a senior technologist, and Terry Blevins is principal technologist, future architecture, for Emerson Process Management.

Additional reading:

Bennett, Stuart, “A history of control engineering, 1930-1955.” IET, p. 48. ISBN 978-0-86341-299-8, 1993.

Minorsky, Nicolas (1922). "Directional stability of automatically steered bodies." Journal of the American Society of Naval Engineers, 34 (2): 280–309.

J. G. Ziegler and N. B. Nichols, “Optimum settings for automatic controllers,” Transactions of the ASME, Vol. 64, Nov. 1942.

J. G. Ziegler and N. B. Nichols, “Optimum settings for automatic controllers,” Transactions of the ASME, Vol. 115, June 1993.

K. J. Astrom and T. Hagglund, “Automatic tuning of PID controllers,” ISA 1988, Research Triangle Park, NC, USA.

K. J. Astrom and T. Hagglund, “A frequency domain method for automatic tuning of simple feedback loops”, IEEE 23rd Conference on Decision and Control, Las Vegas, Dec. 1984.

W.L. Bialkowski and B. Haggman, “Quarter-amplitude damping method is no longer the industry standard,” American Papermaker, March 1992.

T. Blevins, W. Wojsznis, and M. Nixon, “Advanced Control Foundation,” ISA, 2012.

Skogestad, S. “Simple analytic rules for model reduction and pid controller tuning,” Journal of Process Control 13, 2003. 

Key concepts

  • PID controllers are virtually everywhere, yet effective tuning remains a challenge
  • Conceptually, there is more similarity among various methods than one might expect
  • Ultimately, a strategy needs to reflect the needs of the process, and selection depends on understanding those needs  

Go online

For more information, visit:



Read more on control strategy:

Fixing PID, Nov. 2012

Feedback controllers do their best, Oct. 2012

Disturbance-rejection vs. setpoint-tracking controllers, Sept. 2011

Understanding derivative in PID control, Feb. 2010

Three faces of PID, Mar. 2007

<< First < Previous 1 2 Next > Last >>

Anonymous , 04/04/13 12:14 AM:

Good it helps many new users in industry
LESZEK , MN, Poland, 04/04/13 05:56 AM:

wery god for start andestending
Amtonio , Non-US/Not Applicable, Mexico, 05/14/13 10:12 PM:

What's up whit a hi derivative gain in a controller PID?
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
A cool solution: Collaboration, chemistry leads to foundry coat product development; See the 2015 Product of the Year Finalists
Raising the standard: What's new with NFPA 70E; A global view of manufacturing; Maintenance data; Fit bearings properly
Sister act: Building on their father's legacy, a new generation moves Bales Metal Surface Solutions forward; Meet the 2015 Engineering Leaders Under 40
Cyber security cost-efficient for industrial control systems; Extracting full value from operational data; Managing cyber security risks
Drilling for Big Data: Managing the flow of information; Big data drilldown series: Challenge and opportunity; OT to IT: Creating a circle of improvement; Industry loses best workers, again
Pipeline vulnerabilities? Securing hydrocarbon transit; Predictive analytics hit the mainstream; Dirty pipelines decrease flow, production—pig your line; Ensuring pipeline physical and cyber security
Upgrading secondary control systems; Keeping enclosures conditioned; Diagnostics increase equipment uptime; Mechatronics simplifies machine design
Designing positive-energy buildings; Ensuring power quality; Complying with NFPA 110; Minimizing arc flash hazards
Building high availability into industrial computers; Of key metrics and myth busting; The truth about five common VFD myths

Annual Salary Survey

After almost a decade of uncertainty, the confidence of plant floor managers is soaring. Even with a number of challenges and while implementing new technologies, there is a renewed sense of optimism among plant managers about their business and their future.

The respondents to the 2014 Plant Engineering Salary Survey come from throughout the U.S. and serve a variety of industries, but they are uniform in their optimism about manufacturing. This year’s survey found 79% consider manufacturing a secure career. That’s up from 75% in 2013 and significantly higher than the 63% figure when Plant Engineering first started asking that question a decade ago.

Read more: 2014 Salary Survey: Confidence rises amid the challenges

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.