Emerging UPS technologies, applications

Several emerging UPS technologies are gaining acceptance. Some of these up-and-coming UPS types include superconductive magnetic energy storage (SMES), flywheels, super capacitors, and fuel cells.

06/25/2012


SMES: A SMES system involves circulating dc in the field of a magnetic coil. A solid-state switch controls the circulation of the current in the system. The large magnetic coil creates a large amount of inductance when the solid-state switch is in the open, or nonconducting, state. This high inductive force pushes current into a capacitor. Control circuits in the system preserve a predetermined voltage level across the capacitor. Under normal operating conditions, the current circulates through the switch when it is closed to keep the magnetic field charged. An internal inverter converts the dc source into ac. The capacitor can discharge the required voltage primarily during short power-quality anomalies, such as utility switching events, providing power-quality protection to critical loads in the facility. After discharging, the system can recharge within a few minutes. The amount of stored energy can be in the MW range.

Currently, superconducting magnetic energy storage systems are available with low-temperature options, which use helium for cooling. High-temperature systems that use nitrogen are still in development.

Flywheel: A flywheel is a device that couples a motor-generator (MG) with a mass that rotates to store energy for a short period of time. Typically, flywheel systems can store less than 15 sec of kinetic energy for a fully loaded distribution system. The MG draws power from the serving utility or other power source to spin the rotor within the flywheel assembly. During a power-quality anomaly or a power outage, the spinning flywheel converts kinetic energy to ac through an inverter and control system to serve critical loads.

Even if a standby generator is not designed for life safety loads, it can typically be up and running within 10 to 15 sec after a power failure. Most flywheel UPSs will supply 15 sec of full-load power and can actually supply power for up to several minutes at less than full load. In addition, most utility disturbances last for 5 sec or less, according to the U.S. Dept. of Energy’s Federal Energy Management Program (FEMP). For these reasons, a rotary or flywheel UPS can be a viable option over conventional battery backup UPS systems.

A flywheel’s rotational speed has a dramatic effect on the amount of stored energy available for critical loads. According to FEMP, doubling a flywheel’s rpm will quadruple the available stored energy. High-speed flywheel systems require a different design approach than low-speed systems. High-speed systems are typically made from carbon or carbon and fiberglass composite materials, which can withstand the higher stress associated with high-speed systems. These systems also use magnetic bearings and vacuum enclosures to reduce rotational friction and system losses.

The traditional flywheel is built from steel and is restricted to about 2,000 to 3,500 rpm. Carbon fiber flywheels can spin at 30,000 to 55,000 rpm.

Flywheels have several advantages over battery systems including:

  • Flywheel reliability is typically greater than a single battery string
  • A flywheel requires less maintenance than UPS systems that use batteries
  • Flywheel UPS systems do not require the controlled environment that battery-based UPS systems typically require: Batteries must be kept around 77 F, and can present explosion or acid spill risks
  • Flywheels require less space than battery-type UPSs
  • A battery system can require hydrogen sensors, spill control, and neutralization. Eye-wash stations may also be required with battery installations. In addition, battery system should be monitored continuously to ensure top performance and life expectancy.

Flywheels can be coupled with generators to provide continuous power for both short-term and long-term outages.

Super capacitor: Ultra capacitors (also known as super capacitors) work by storing electrostatic energy within the capacitor. In a typical application, super capacitors work with other energy storage devices, such as batteries, to provide both short-term and long-term power-quality protection. Super capacitors can provide protection from short-term events, such as voltage sags. Batteries can provide long-term protection for power-quality anomalies, such as voltage brownouts and complete outages. By combining the two systems, the super capacitor can handle a majority of the power quality events, leaving the batteries to deal with only the long-term events. This reduces the duty cycle on the batteries and can greatly increase the life of the entire power quality protection system.

Fuel cells: A fuel cell provides dc voltage that can be used to power devices. Current technology allows a proton-exchange membrane fuel cell the size of a piece of luggage to power a car. Fuel cells for homes and commercial use are just starting to become available. This technology can use methanol, natural gas, and propane as the fuel source. Issues such as hydrogen infrastructure and fuel-cell life must be addressed and improved before this technology can become more widespread.

Fuel cells are now an approved standby power source for both life safety and legally required standby loads based on the 2008 edition of the National Electrical Code.

Electrical engineers or electrical distribution system designers should know about these emerging technologies. They are certainly not commonplace today, but may become more common as these systems are improved and become more cost-effective and viable.


Lane is president and CEO of Lane Coburn & Assoc. He is a member of the Consulting-Specifying Engineer editorial advisory board.



No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
Hannover Messe 2016: Taking hold of the future - Partner Country status spotlights U.S. manufacturing; Honoring manufacturing excellence: The 2015 Product of the Year Winners
Inside IIoT: How technology, strategy can improve your operation; Dry media or web scrubber?; Six steps to design a PM program
World-class manufacturing: A recipe for success: Finding the right mix for a salad dressing line; 2015 Salary Survey: Manufacturing slump dims enthusiasm
Getting to the bottom of subsea repairs: Older pipelines need more attention, and operators need a repair strategy; OTC preview; Offshore production difficult - and crucial
Digital oilfields: Integrated HMI/SCADA systems enable smarter data acquisition; Real-world impact of simulation; Electric actuator technology prospers in production fields
Special report: U.S. natural gas; LNG transport technologies evolve to meet market demand; Understanding new methane regulations; Predictive maintenance for gas pipeline compressors
Warehouse winter comfort: The HTHV solution; Cooling with natural gas; Plastics industry booming
Managing automation upgrades, retrofits; Making technical, business sense; Ensuring network cyber security
Designing generator systems; Using online commissioning tools; Selective coordination best practices

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
This article collection contains several articles on the vital role that compressed air plays in manufacturing plants.
This article collection contains several articles on the Industrial Internet of Things (IIoT) and how it is transforming manufacturing.
click me