Do-it-yourself model-based control

When regulatory control can’t do the job, and you can’t find an off-the-shelf APC package, your only option may be to build your own. It’s not easy, but it can be done and good ones can make a world of difference.


There can be situations where conventional regulatory control might not run a process optimally and your company management might want to try some variation of advanced process control (APC). While there are various sub-groups under this umbrella, one common approach is model predictive control (MPC), also more generically known as model-based control. This method uses a mathematical model of a process connecting relationships of relevant parameters.

Building such a model begins with an understanding of what is actually happening to the feedstocks as they are turned into final products. This includes chemical reactions, energy balance, reaction times, and so on. For some processes, it is possible to purchase existing process models that can be added to your control system. The more common the process, the greater likelihood that you will be able to buy one off the shelf. For example, there are many plants that make ethanol from corn and there are basic similarities from one location to another, so there are multiple model platforms available.

However, if your need is more specialized, a pre-packaged solution may simply not be available. In those situations, one option is creating your own process model to drive your DCS. This kind of project is not for the faint of heart, but at the same time it is not impossible. Those who have participated in such projects suggest that the most critical factor for success is deep knowledge of the process and experience with the individual plant.

Deciding strategy

Most models applied to a working plant use actual historical data combined with basic stoichiometric relationships. “There are two different mindsets,” says Chad Harper, CAP, PMP, director of technology for Maverick Technologies. “For one, you can use a recipe scenario where the process may be so deterministic that some first principles approach can be pulled together and get you where you want to be. The other one applies inferred properties using first principles to look at key variables in the plant and go through a regression process utilizing the plant data. You’re looking for the actual plant dynamic models to be able to put in there. We’ve done both.”

In either case, Harper warns that the model has to be adapted to the specific plant in question since every process unit has its own operating peculiarities. He adds, “Even if you can model something in a steady state environment you can rarely say, ‘Here are the numbers that I want to be at. Go!’ Process dynamics, closed-loop control behavior, and bumpless activation all have to be accounted for.”

The approach may be based on the information and resources available in a given situation, effectively using what you have to work with. Ric Snyder, senior product manager, information software and process business at Rockwell Automation, suggests, “Some people like to build empirical models because they have lots of data. Others like to do equation-based models because they have some chemical engineering knowledge or first principles models available. For building the models themselves, there are lots of dynamic identification toolkits that people can use, so once you’ve identified a specific tool and you have the data, building the model or regressing the parameters out of the data is not particularly difficult, it’s more the judgment of knowing what inputs I need and what are the outputs that I think I can predict. This is where some degree of chemical engineering knowledge and background is crucial in order to get good models. It’s more about defining what the model structure should be and what things should relate to that.”

Simulation first?

One way to create a model is to do it first using a process simulator as a means to test your assumptions. When the simulator is working, you can see how closely it follows actual plant operation and vice versa.

“In process plants, you don’t have the luxury of trial and error,” says Tony Lennon, industry marketing manager for industrial automation at MathWorks. “A plant manager’s real job is to make sure product is being shipped out the door while dealing with safety considerations, damage to equipment, downtime, and so on. Simulation is a means of making good design and implementation decisions, so when you do go to the plant manager, you can show what you’ve done with the simulation, reproduce the error, and say, ‘We need to try this,’ and then explain why you think it’s going to work.”

Lennon warns that simulations can’t be created in a vacuum but must reflect the reality of a specific plant environment. “If you’re going to use a simulation tool, you have to model what is happening in your plant today,” he adds. “If you haven’t done that, then don’t even continue because you haven’t captured the real dynamics of your plant. The most effective way to do that is to combine real process data in some sort of system identification process along with some type of first principles model.”

<< First < Previous 1 2 Next > Last >>

Dan , WA, United States, 03/24/13 02:21 PM:

This is an excellent article. As a retired Chemical Engineer from the process industries, I completely agree with Peter Welander. Building your own advanced process control (APC) package can be a daunting task. There are some additional articles on this topic at:

Of particular relevance are the articles under the heading:

Process Control Articles (PDF):

Nonlinear multivariable control made easy

Desire good process control? Try a systems approach
Anonymous , 03/26/13 04:24 AM:

This is an excellent article. As a retired Chemical Engineer from the process industries, I completely agree with Peter Welander. Building your own advanced process control (APC) package can be a daunting task. There are some additional articles on this topic at:

Of particular relevance are the articles under the heading:

Process Control Articles (PDF):

Nonlinear multivariable control made easy

Desire good process control? Try a systems approach
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
A cool solution: Collaboration, chemistry leads to foundry coat product development; See the 2015 Product of the Year Finalists
Raising the standard: What's new with NFPA 70E; A global view of manufacturing; Maintenance data; Fit bearings properly
Sister act: Building on their father's legacy, a new generation moves Bales Metal Surface Solutions forward; Meet the 2015 Engineering Leaders Under 40
Cyber security cost-efficient for industrial control systems; Extracting full value from operational data; Managing cyber security risks
Drilling for Big Data: Managing the flow of information; Big data drilldown series: Challenge and opportunity; OT to IT: Creating a circle of improvement; Industry loses best workers, again
Pipeline vulnerabilities? Securing hydrocarbon transit; Predictive analytics hit the mainstream; Dirty pipelines decrease flow, production—pig your line; Ensuring pipeline physical and cyber security
Upgrading secondary control systems; Keeping enclosures conditioned; Diagnostics increase equipment uptime; Mechatronics simplifies machine design
Designing positive-energy buildings; Ensuring power quality; Complying with NFPA 110; Minimizing arc flash hazards
Building high availability into industrial computers; Of key metrics and myth busting; The truth about five common VFD myths

Annual Salary Survey

After almost a decade of uncertainty, the confidence of plant floor managers is soaring. Even with a number of challenges and while implementing new technologies, there is a renewed sense of optimism among plant managers about their business and their future.

The respondents to the 2014 Plant Engineering Salary Survey come from throughout the U.S. and serve a variety of industries, but they are uniform in their optimism about manufacturing. This year’s survey found 79% consider manufacturing a secure career. That’s up from 75% in 2013 and significantly higher than the 63% figure when Plant Engineering first started asking that question a decade ago.

Read more: 2014 Salary Survey: Confidence rises amid the challenges

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.