Designing PID responses

There are many ways of setting PID strategy to make a controller respond the way you want it to. It all depends on what you think should happen.

04/01/2010


In an earlier life, I was overseeing commissioning of a control system that our company had manufactured as part of a larger flue gas conditioning package. I was on the site with the system integrator that we had used to configure the controller. The customer wanted us to tune the main control loop but the integrator said that part of the process fell outside of his scope of supply. He did not want to do any loop tuning, no way, no how. Given that the whole project was not going well, I pressed the request and he told me that loop behavior needs to be tailored to the process and he wasn't going to do it. Ultimately, after much haggling, the customer relented and did the tuning.

At that time I didn't fully appreciate the substance of the discussion. Either a loop works or it doesn't, right? Eventually I came to understand that the way a system responds has to be appropriate for the application. When we write articles on the topic of PID control for Control Engineering , we have to approach these subtleties as best we can. Usually when Vance VanDoren discusses loop tuning, he does it in the context of setpoint changes rather than compensating for upsets. This is deliberate, and Vance and I have discussed that how you tune for setpoint changes can be much different than how you want your controller to respond to an upset. This topic will most certainly be the basis for a feature article one of these months.

Until then, here is a brief discussion of the topic that may get you thinking. Farther down the page there are three pairs of diagrams with a process variable and setpoint. Each pair (left and right) illustrates how a particular tuning strategy responds to a set point change (left) compared to an upset (right) of similar magnitude. The upper half of the graph shows what the variable is doing, and the lower half shows the controller output. Each scenario illustrates the same magnitude change, but with a different approach to compensating for it.

Aggressive PI control set point tracking

Aggressive PI control, set point tracking

Aggressive PI control, load response

Aggressive PI control, load response

Moderate PI control, set point tracking

Moderate PI control, set point tracking

Moderate PI control, load response

Moderate PI control, load response

Aggressive I-PD, set point tracking

Aggressive I-PD control, set point tracking

Aggressive I-PD control, load response

Aggressive I-PD control, load response 

These charts were sent by Bob Rice, director of solutions engineering for Control Station. He includes the following explanation:

"The primary difference between a load (disturbance/upset) response and a set point response lies in the objective the end-user is typically trying to achieve. In most cases, users trying to get a good set point response are looking for a fast but smooth response which usually comes from the use of less aggressive tuning parameters. If the user is trying to reject a disturbance, then they are after a much faster response using more aggressive tunings. Therefore, they are at best conflicting control objectives. You cannot be both quick and responsive, while being smooth with little to no overshoot. There is always a trade-off when trying to tune for both set point tracking and load rejection using a typical PID-type controller. There is an‘I-PD' type controller, which is a ‘proportional on measurement' approach vs. ‘proportional on error,' which can improve the set-point tracking response under aggressive PI-control."

-Peter Welander, process industries editor, PWelander@cfemedia.com
Control Engineering Process & Advanced Control Monthly eNewsletter
Register here to select your choice of free eNewsletters.



No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
2016 Engineering Leaders Under 40; Future vision: Where is manufacturing headed?; Electrical distribution, redefined
Strategic outsourcing delivers efficiency; Sleeve bearing clearance; Causes of water hammer; Improve air quality; Maintenance safety; GAMS preview
World-class maintenance: The three keys to success - Deploy people, process and technology; 2016 Lubrication Guide; Why hydraulic systems get hot
Flexible offshore fire protection; Big Data's impact on operations; Bridging the skills gap; Identifying security risks
The digital oilfield: Utilizing Big Data can yield big savings; Virtualization a real solution; Tracking SIS performance
Getting to the bottom of subsea repairs: Older pipelines need more attention, and operators need a repair strategy; OTC preview; Offshore production difficult - and crucial
Applying network redundancy; Overcoming loop tuning challenges; PID control and networks
Driving motor efficiency; Preventing arc flash in mission critical facilities; Integrating alternative power and existing electrical systems
Package boilers; Natural gas infrared heating; Thermal treasure; Standby generation; Natural gas supports green efforts

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
This article collection contains several articles on the vital role that compressed air plays in manufacturing plants.
This article collection contains several articles on the Industrial Internet of Things (IIoT) and how it is transforming manufacturing.
This article collection contains several articles on strategic maintenance and understanding all the parts of your plant.
click me