Designing labs, research buildings

05/28/2013


CSE: What are some common missteps that engineers might make on a laboratory project?

Michael Chow: Cleaning up power should be considered as many laboratory instruments have sensitive power parameters. Consideration should be given also to using uninterruptible power supply (UPS) systems.

Crutchfield: We sometimes run into lab projects where the old 12 air changes per hour (ACH) rules are still being enforced by the environmental health and safety folks at the various institutions. Couple that with the desire for constant volume hoods, which seem to be favored by maintenance staff, and it’s a recipe for an underperforming building. When we discuss this with the owners and suggest alternate compliance and safety methods, they often recognize that there are better ways to accommodate lab airflows, but many owners are still reluctant to change from their institutionally set policies. We aren’t always able to convince them that alternate methods should be used for their projects, but we feel that it is our responsibility to show them the alternatives, and the economics of the alternatives, so that they can be more informed as owners. The goal is to help them ultimately understand their internal policy, and compare that to current state-of-the-art procedures, so that if they want to make policy changes, they have full understanding of the issues involved.

Ramirez: Design for flexibility in control strategies, input/output expandability, and provide for plenty of instrumentation. Laboratory users are constantly changing, particularly in R&D facilities. Specifying the proper control architecture for achieving functional changes a laboratory space may see over the course of its life, specifying proper material for application (metals, gasket seals, temperature and pressure scales, etc.) to achieve functional changes in the laboratory. Of course, this must be balanced with project budget.

Linamen: One common mistake is in thinking that offices, labs, and classrooms/lecture rooms in lab buildings all need to be served from separate HVAC systems. Segregating these spaces on separate systems requires added space for equipment and supply/return/exhaust risers. For a physical sciences building we worked in, there were sophisticated research and teaching labs, as well as classrooms/lecture halls and offices. There is one HVAC system for the entire building, and one main supply air riser, return air riser, and exhaust air riser. Laboratory air is 100% exhausted. What is frequently not recognized is that for most mixed-use lab buildings, the lab air requirement is usually a major part of the total HVAC air requirement for the entire building, usually 70% or more. If multiple HVAC systems are provided, a percentage of the return air from the offices and classroom spaces must be rejected, so that a corresponding percentage of ventilation air can be provided to maintain air quality. However, if one common HVAC system serves all spaces and if the lab air requirement is a high percentage of the total air requirement, 100% of the air from the offices and classroom spaces can be returned. This reduces the total air requirement for the building. This usually results in fewer air handling units for the building, so it saves first cost, it improves overall flexibility because labs can be converted to non-lab functions and vice versa without major changes to the HVAC, and the non-lab spaces have excellent air quality because they receive higher than normal percentage outside air. This usually makes it more convenient to provide redundancy, because redundancy is only required for the one system. 

CSE: When working in labs outside the United States, what differences, challenges, or best practices have you observed?

Crutchfield: Our experience has confirmed that laboratory standards outside the U.S. have not evolved to the extent they have in the U.S. Standards outside of the U.S. have remained unchanged largely because the international markets have not developed as many new state-of-the-art lab facilities as we have in the U.S. Many of the criteria points such as load densities, air change rates, and fume hood face velocities have not been challenged because the need simply has not occurred. However, with the globalization of industry groups, this is beginning to change. In the European market, attention to overall health and safety within the lab environment requires focused risk assessment by the project team. The project team routinely consists of owners, design professionals, lab operators, and maintenance staff. We have found this refreshing, as clients now understand the critical role appropriate operating procedures serve for laboratory health and safety.

Ramirez: In the United States, it is general practice to assign about 25% of a fee to construction administration. This is generally in the standard design/bid/build project delivery model. Delivery of a similar project abroad is generally a design/assist or design/build delivery model. This will require significantly more on-site support, and commonly we can see the fee structure being more like 55% design and 45% construction administration and/or on-site support, if not an even split. Depending on the project schedule, this is probably the best way for design professionals to manage their risk. 



No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
The true cost of lubrication: Three keys to consider when evaluating oils; Plant Engineering Lubrication Guide; 11 ways to protect bearing assets; Is lubrication part of your KPIs?
Contract maintenance: 5 ways to keep things humming while keeping an eye on costs; Pneumatic systems; Energy monitoring; The sixth 'S' is safety
Transport your data: Supply chain information critical to operational excellence; High-voltage faults; Portable cooling; Safety automation isn't automatic
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Maintaining low data center PUE; Using eco mode in UPS systems; Commissioning electrical and power systems; Exploring dc power distribution alternatives
Synchronizing industrial Ethernet networks; Selecting protocol conversion gateways; Integrating HMIs with PLCs and PACs
Why manufacturers need to see energy in a different light: Current approaches to energy management yield quick savings, but leave plant managers searching for ways of improving on those early gains.

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.