Designing Efficient Schools: LEED MEP Related Credits

A Project Checklist and the Impact of MEP Related LEED Credits

09/03/2010


Main Story                Design Strategies                LEED MEP Related Credits                Case Study


LEED MEP Related Credits

Table: Impact of MEP Related LEED Credits to Total Score

LEED 2009 for Schools New Construction and Major Renovation

Project Checklist

Sustainable Sites

Possible Points:

24

Credit 8

Light Pollution Reduction

1

This credit is reasonably achievable with careful building perimeter security and site lighting as well as advanced digital lighting controls.

Water Efficiency

Possible Points:

11

Prereq 1

Water Use Reduction - 20% Reduction

Use of low-flow toilets, urinals, and metering faucets typically meets the requirements of the prerequisite. Advanced systems such as waterless urinals and dual-flush technology water closets are needed for the credit #3 points.

Credit 3

Water Use Reduction - 30% to 40%

2-4

Energy & Atmosphere

Possible Points:

33

Prereq 1

Fundamental Commissioning of Building Energy Systems

This has become standard for all LEED projects.

Prereq 2

Minimum Energy Performance

The minimum threshold has been raised in V3 to exceed ASHRAE 90.1 baseline model by 10% for new buildings and 5% for major renovations.

Prereq 3

Fundamental Refrigerant Management

Building systems are CFC-free.

Credit 1

Optimize Energy Performance from 12% to 48% better for new buildings & 8% to 44% better for building renovations.

1-19

This is where the joint efforts of architects and engineers are required to achieve improvements above 25%—30%.

Credit 2

On-Site Renewable Energy (1 to 13% renewable energy)

1-7

Install and use on-site renewable energy systems to offset building energy use.

Credit 3

Enhanced Commissioning

2

This requires commissioning through a third-party Cx agent, performing at least one design review, and reviewing contractor submittals with the Owner’s Project Requirements (OPR) and Basis of Design (BoD). Additionally, develop a Cx Systems Manual to assist in optimally operating the commissioned systems, document that user equipment training has taken place, and perform a follow-up with building O&M staff regarding building operation 10 months after substantial completion.

Credit 4

Enhanced Refrigerant Management

1

Minimize the use of refrigerants with high Lifecycle Ozone Depleting Potential and high Lifecycle Direct Global Warming Potential (primarily R-22 and R-123).

Credit 5

Measurement and Verification

2

Provide mechanisms for ongoing accountability of building energy consumption for at least 1 year of post-construction occupancy.

Credit 6

Green Power

2

This is a test to the building owner’s long-term commitment to macro-level sustainability by contracting to purchase at least 35% of the building’s electricity from renewable sources for at least two years.

Materials and Resources

Possible Points:

13

Indoor Environmental Quality

Possible Points:

19

Prereq 1

Minimum Indoor Air Quality Performance

Meet the minimum requirements of ASHRAE 62.1-2007.

Prereq 2

Environmental Tobacco Smoke (ETS) Control

Prohibit smoking in the building.

Prereq 3

Minimum Acoustical Performance

Minimally, achieve a maximum background noise level from HVAC systems in classrooms and other core learning spaces of 45 dBA and ensure that the total ceiling or a combination of wall panels and ceiling treatments equaling at least the total ceiling area are finished with materials with a Noise Reduction Coefficient (NRC) of 0.7 or higher.

Credit 1

Outdoor Air Delivery Monitoring

1

Provide the capacity to monitor actual system ventilation rates.

Credit 2

Increased Ventilation

1

Exceed ASHRAE 62.1-2007 minimum ventilation rates to all occupied spaces by at least 30%.

Credit 5

Indoor Chemical and Pollutant Source Control

1

Employ permanent entryway systems at least 10 ft into the building, maintain spaces with hazardous gases or chemicals in a negative pressure zone, install new MERV 13 filters for all return and outside air entering the supply airstream prior to building occupancy, and provide containment for hazardous liquid wastes where water and chemical concentrate mixing occurs.

Credit 6.1

Controllability of Systems - Lighting

1

Provide a high level of lighting system control by at least 90% of individual occupants and provide adjustability of the lit environment for groups in multi-occupant spaces to meet group needs and preferences.

Credit 6.2

Controllability of Systems - Thermal Comfort

1

Provide a high level of thermal comfort by at least 50% of individual occupants and provide adjustability of the thermal environment for groups in multi-occupant spaces to meet group needs and preferences

Credit 7.1

Thermal Comfort - Design

1

Design the HVAC system to meet the requirements of ASHRAE 55-2004 and demonstrate design compliance.

Credit 7.2

Thermal Comfort - Verification

1

Provide for the assessment of building occupants’ thermal comfort within 6—18 months after occupancy through surveys or other mechanisms.

Credit 8.1

Daylight and Views - Daylight (75 to 90% of classrooms & 75% of other spaces)

1 - 3

Through computer simulation, prescriptive design, field measurement, or a combination of these techniques, achieve daylighting in at least 75% to 90% of classroom spaces and/or 75% of all other regularly occupied spaces.

Credit 8.2

Daylight and Views - Views

1

Achieve direct line of sight to the outdoor environment between 30”–90” AFF in 90% of all regularly occupied areas.

Credit 9

Enhanced Acoustical Performance

1

Design the building shell, classroom partitions, and other core learning space partitions to meet Sound Transmission Class (STC) criteria of ANSI Standard S12.60-2002, except window, which must achieve an STC rating of 35. Additionally, the background HVAC noise level in these spaces cannot exceed 40 dBA.

Credit 10

Mold Prevention

1

Reduce the potential presence of mold by achieving credits IEQc3.1 (Construction Indoor Air Quality Management Plan–During Construction), IEQc7.1,  IEQc7.2.

Innovation & Design Process

Possible Points:

6

Regional Priority Credits

Possible Points:

4

Total

Possible Points:

110

Certified 40 to 49 points. Silver 50 to 59 points. Gold 60 to 79 points. Platinum 80 to 110 points.

 

 


Continue to Designing Efficient Schools: Case Study


 

Previous Articles

 

 

Designing Efficient Schools: Main Story

Designing Efficient Schools: Design Strategies

 



No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
2016 Engineering Leaders Under 40; Future vision: Where is manufacturing headed?; Electrical distribution, redefined
Strategic outsourcing delivers efficiency; Sleeve bearing clearance; Causes of water hammer; Improve air quality; Maintenance safety; GAMS preview
World-class maintenance: The three keys to success - Deploy people, process and technology; 2016 Lubrication Guide; Why hydraulic systems get hot
Flexible offshore fire protection; Big Data's impact on operations; Bridging the skills gap; Identifying security risks
The digital oilfield: Utilizing Big Data can yield big savings; Virtualization a real solution; Tracking SIS performance
Getting to the bottom of subsea repairs: Older pipelines need more attention, and operators need a repair strategy; OTC preview; Offshore production difficult - and crucial
Applying network redundancy; Overcoming loop tuning challenges; PID control and networks
Driving motor efficiency; Preventing arc flash in mission critical facilities; Integrating alternative power and existing electrical systems
Package boilers; Natural gas infrared heating; Thermal treasure; Standby generation; Natural gas supports green efforts

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
This article collection contains several articles on the vital role that compressed air plays in manufacturing plants.
This article collection contains several articles on the Industrial Internet of Things (IIoT) and how it is transforming manufacturing.
This article collection contains several articles on strategic maintenance and understanding all the parts of your plant.
click me