Control is in the Details

Don’t underestimate how little things can affect the big picture.

05/14/2012


Over the range of projects we work on, we find ourselves constantly shifting focus from very distant overhead views to the minutest details. For the most part, we tend to relate the big picture information effects to big picture decisions. After all, little detail oriented decisions really only affect a component level change. While we certainly do not hold these guidelines to be law, these concepts oftentimes cloud our judgment and narrow our view of root cause options. Sometimes something small can have a big picture effect.

 

Web handling encoder rounding

The answer to the problem came mathematically. Because the various sized tooling rollers had different configurations of teeth, the scaling in the servo setup had to change with the tooling. Unfortunately, on many of the rollers the numbers of teeth were prime numbers. One of my favorite instances of a very small detail affecting an overall system is one concerning the encoder configuration of a servo motor. This particular problem grew out of a need for frequent tooling changes on a web handling machine that operated continuously. It was used to cut a web into sheets with a very tight tolerance for error. The specific tooling was a cogged roller used to meter the web.

 

The problem presented itself when specific sets of tooling would aggregate error until the product would eventually drift out of tolerance. The investigation to determine the root cause began by characterizing the mechanical properties of the tools generating the error. After confirming the dimensions of the tooling, the investigation moved to the power transfer unit. All gearing and belts were examined for hysteresis or slippage. None of this was found to be out of tolerance.

 

The answer to the problem came mathematically. Because the various sized tooling rollers had different configurations of teeth, the scaling in the servo setup had to change with the tooling. Unfortunately, on many of the rollers the numbers of teeth were prime numbers. The configuration of the servo encoder allowed for a user definition of counts per revolution and counts per unit of measure. In this case, the measuring units of the sheet size were teeth on the tool. This is how the configuration defined teeth per turn of the tool. The configuration of the encoder could be modified at run time, such that the counts per unit could be changed, but the counts per revolution could not be modified.

 

For those of you who stuck with me through the minutia, here is the root cause. In order to avoid error, all encoder scaling had to happen in integer math. In order to create a tool configuration, the counts per turn had to be divisible by all the tooth counts, including the prime numbers. That meant we had to use a number which was larger than the double integer defining this value in the software. In short, we had an insolvable problem. No matter how we defined the counts per revolution, we would always have tooling which could not evenly divide the number of counts per tooth, thus creating an error. This error would aggregate over time until the sheet length moved out of tolerance.

 

This very small configuration issue ended up creating a scenario which generated much larger production problems. The error was small enough to be concealed during early testing, but once in production, it would generate scrap and downtime on a regular basis. The fix was simple enough. By simply adjusting the position of the encoder on a regular basis according to a predicted rounding error, the aggregation of the error was mitigated.

 

 

This post was written by Karl Schrader. Karl is a senior engineer at MAVERICK Technologies, a leading system integrator providing industrial automation, operational support and control systems engineering services in the manufacturing and process industries. MAVERICK delivers expertise and consulting in a wide variety of areas including industrial automation controls, distributed control systems, manufacturing execution systems, operational strategy, and business process optimization. The company provides a full range of automation and controls services – ranging from PID controller tuning and HMI programming to serving as a main automation contractor. Additionally MAVERICK offers industrial and technical staffing services, placing on-site automation, instrumentation and controls engineers. 



The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
Doubling down on digital manufacturing; Data driving predictive maintenance; Electric motors and generators; Rewarding operational improvement
2017 Lubrication Guide; Software tools; Microgrids and energy strategies; Use robots effectively
Prescriptive maintenance; Hannover Messe 2017 recap; Reduce welding errors
The cloud, mobility, and remote operations; SCADA and contextual mobility; Custom UPS empowering a secure pipeline
Infrastructure for natural gas expansion; Artificial lift methods; Disruptive technology and fugitive gas emissions
Mobility as the means to offshore innovation; Preventing another Deepwater Horizon; ROVs as subsea robots; SCADA and the radio spectrum
Research team developing Tesla coil designs; Implementing wireless process sensing
Commissioning electrical systems; Designing emergency and standby generator systems; Paralleling switchgear generator systems
Natural gas engines; New applications for fuel cells; Large engines become more efficient; Extending boiler life

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
The maintenance journey has been a long, slow trek for most manufacturers and has gone from preventive maintenance to predictive maintenance.
Featured articles highlight technologies that enable the Industrial Internet of Things, IIoT-related products and strategies to get data more easily to the user.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.
Maintenance Manager; California Oils Corp.
Associate, Electrical Engineering; Wood Harbinger
Control Systems Engineer; Robert Bosch Corp.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me