Challenges of Motor Selection and Sizing

The range of sizes, types, and configurations of electric motors can seem endless. Here are a few ideas for navigating the choices.

06/12/2012


CFE Media - machine and motion control - motor-drive iconParadoxically, electric motors are simple, yet complex. Their simplicity comes from having a single purpose: to convert electrical energy into mechanical energy. Their complexity comes from myriad applications where motors are used. A motor’s usefulness is in how it is applied. A spinning motor with nothing connected to its shaft is a waste of time, money, and energy.

However, the value of a motor is how efficiently and effectively its mechanical energy operates conveyors, fans, pumps, and other types of industrial equipment. To specify and apply electric motors, engineers must thoroughly understand the electrical and physical characteristics of the motors and the applications in which they are used.

Terms such as torque, horsepower, inertia, friction, acceleration, and load come to mind when designing motorized equipment. And there are formulas that apply to every parameter. For example, the relationship between horsepower, torque, and speed is fairly straightforward and is calculated using simple mathematics:

Horsepower = (torque in pound-feet x motor speed in RPM)/5,250

Torque and speed can be found by changing the formula algebraically. However, nothing happens unless the motor actually starts spinning, which requires it to overcome inertia of both the motor and its load. This is why pre-EPAct (Energy Policy Act of 1992) motors require five or six times their full-load amps (FLA) to come up to speed, and NEMA premium efficiency motors can require eight to 10 times FLA to reach operating speed.

Inertia and friction work together to resist starting a still motor. Although coefficient of friction is another frequently used motor application term, it can’t be found through direct calculations; it must be measured experimentally. The ratio of friction force to normal force is a simplified definition of the coefficient of friction.

While the coefficient of friction depends on the properties of two materials that come into contact as with motor shaft and bearings, for example, there are other factors that come into play. Temperature, velocity, atmosphere, shape, and lubrication affect the coefficient of friction as well. Obviously, lowering friction increases motor efficiency.

Motors are used in a plethora of applications. While many books about motor design and applications have been written, they barely scratch the surface of possibilities. One of the sidebars with this article gives you an idea of how complex the calculations can be if you want to consider all the relevant variables connected to an application. If you read this article online, there is additional detail and a second example.

Jack Smith is an industry consultant and writer, and served as an editor for Plant Engineering. Reach him at jacksmith.writes(at)gmail.com.



No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
The true cost of lubrication: Three keys to consider when evaluating oils; Plant Engineering Lubrication Guide; 11 ways to protect bearing assets; Is lubrication part of your KPIs?
Contract maintenance: 5 ways to keep things humming while keeping an eye on costs; Pneumatic systems; Energy monitoring; The sixth 'S' is safety
Transport your data: Supply chain information critical to operational excellence; High-voltage faults; Portable cooling; Safety automation isn't automatic
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Maintaining low data center PUE; Using eco mode in UPS systems; Commissioning electrical and power systems; Exploring dc power distribution alternatives
Synchronizing industrial Ethernet networks; Selecting protocol conversion gateways; Integrating HMIs with PLCs and PACs
Why manufacturers need to see energy in a different light: Current approaches to energy management yield quick savings, but leave plant managers searching for ways of improving on those early gains.

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.