'Big data’ and the need for improved time synchronization standards

Without time synchronization, vast streams of data have limited use.

09/18/2012


The creation, communication, storage, and analysis of ever-greater streams of data—from the grid, from customers, from wholesale markets—will be a hallmark of smarter grids in the future.



Time synchronization of that data allows analysts to draw meaningful connections between events and aids both forensic analysis of past events and near-real time situational awareness. Without time synchronization, those vast streams of data have limited use. The fuller term is “reference time synchronization.”



To date, reference time synchronization has relied largely on radio clocks or satellite receivers employing a standard called IRIG-B, or Inter-Range Instrumentation Group-B. IRIG-B is an old protocol developed by the U.S. Dept. of Defense for checking time sequences in the firing of ordinance.

 

The power industry now recognizes it needs a greater degree of accuracy for reference time synchronization, one that can be distributed over an Ethernet network.



Two standards are important here. One is IEEE Standard 1588, which is a precision time protocol that has rapidly become an international standard used by many different industries. The other relevant standard, which has recently been completed, is IEEE Standard C37.238. The latter defines the precision time protocol of IEEE Standard 1588 in power system protection, control, and automation. IEEE Standard C37.238 addresses the specific needs of electric utilities.

 

Engineers should look to the newer, more accurate approach to reference time synchronization for their clients. The utility itself might well be the source for time synchronization, which would produce a very accurate correlation between utility and industrial facility. This will be important for large industrial facilities that take power at transmission voltage levels and have their own substations and circuit breakers, because this level of accuracy allows the utility to determine an exact sequence of events if and when there's a loss of transmission voltage to the industrial customer. Those customers could be major manufacturing facilities or petrochemical facilities, but also utility-scale wind farms and solar photovoltaic farms feeding power onto the transmission network.



This approach enables the forensic determination of a sequence of past events: what actually tripped, what was the initiating event? The other is that the most precise reference time synchronization is needed for synchrophasors that increasingly will be used to provide situational awareness of the grid’s health. Synchrophasors require this higher degree of accuracy.



One outcome of real-time situational awareness is remedial action schemes, which could inform rapid, automated responses that prevent the collapse of the grid. A cascading fault actually occurs over many seconds, even minutes. With proper situational awareness, an automated response or even an operator’s timely intervention could stop a fault from cascading across the system.



Let’s tie this back to the industrial customer. The greater that customer’s load or generation capacity—whether that’s a petrochemical facility, a steel mill, or a 180-MW wind farm—the greater the potential impact on the grid. Thus the utility has great interest in seeing that industrial customer on the highest standard for reference time synchronization, which is IEEE Standard 1588 and its corollary, C37.238. These standards are now published and the vendor community is offering products which adhere to these standards, contributing to the cost-effectiveness of adopting them.



It’s true that the consulting specifying engineer may find, in designing a new system or in retrofitting a legacy system for time synchronization, that adopting IEEE Standard 1588 and C37.238 is more costly upfront and, at first, it may restrict the choice of related products. However, it’s clear that these two standards will prevail for reference time synchronization going forward, covering the lifecycle of a design for a new or retrofitted system.


Sam Sciacca, PE, senior member of IEEE, president of SCS Consulting LLC, Winsted, Conn.Sam Sciacca is an active senior member in the IEEE and the International Electrotechnical Commission (IEC) in the area of utility automation. He has more than 25 years of experience in the domestic and international electrical utility industries. Sciacca serves as the chair of two IEEE working groups that focus on cyber security for electric utilities: the Substations Working Group C1 (P1686) and the Power System Relay Committee Working Group H13 (PC37.240). Sciacca also is president of SCS Consulting.



The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
A new approach to the Skills Gap; Community colleges may hold the key for manufacturing; 2017 Engineering Leaders Under 40
Doubling down on digital manufacturing; Data driving predictive maintenance; Electric motors and generators; Rewarding operational improvement
2017 Lubrication Guide; Software tools; Microgrids and energy strategies; Use robots effectively
The cloud, mobility, and remote operations; SCADA and contextual mobility; Custom UPS empowering a secure pipeline
Infrastructure for natural gas expansion; Artificial lift methods; Disruptive technology and fugitive gas emissions
Mobility as the means to offshore innovation; Preventing another Deepwater Horizon; ROVs as subsea robots; SCADA and the radio spectrum
Power system design for high-performance buildings; mitigating arc flash hazards
Research team developing Tesla coil designs; Implementing wireless process sensing
Commissioning electrical systems; Designing emergency and standby generator systems; Paralleling switchgear generator systems

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
The maintenance journey has been a long, slow trek for most manufacturers and has gone from preventive maintenance to predictive maintenance.
Featured articles highlight technologies that enable the Industrial Internet of Things, IIoT-related products and strategies to get data more easily to the user.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.
Maintenance Manager; California Oils Corp.
Associate, Electrical Engineering; Wood Harbinger
Control Systems Engineer; Robert Bosch Corp.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me