Assemble the right combination of tools to construct an effective vision system

Seeing the advantages machine vision provides in automation environments isn’t difficult. Inspecting products on the line saves the costs and consequences of recalled items, and properly labeling items before shipping ensures customers receive the correct product – a critical concern in the food, beverage and pharmaceutical industries.

07/01/2010


Seeing the advantages machine vision provides in automation environments isn’t difficult. Inspecting products on the line saves the costs and consequences of recalled items, and properly labeling items before shipping ensures customers receive the correct product %%MDASSML%% a critical concern in the food, beverage and pharmaceutical industries.

 

What can be difficult is selecting the right machine vision system from the plethora of options on the market today with the capabilities needed, as well as the speed and reliability high-speed production lines require.

 

The right combination of smart cameras, lighting and software with sophisticated vision tools results in a comprehensive inspection solution that can solve many common applications with ease. Here are a few examples of how manufacturers can utilize vision practically, effectively and cost-efficiently.

 

The wheel deal

In aluminum wheel manufacturing, identifying each wheel model may come down to something as minute as varying hole patterns. One of the best ways to differentiate one wheel from the other as it travels down a conveyor %%MDASSML%% and confirm each wheel is placed in its correct container before shipping %%MDASSML%% is to measure hole pattern dimensions.

 

The challenge is not only to recognize which pattern belongs to which wheel model, but also to find a camera with high enough accuracy within a specified field of view (FOV). For example, the patterns may be so similar that the vision system may need to provide as low as a 4-micron pixel resolution in an inspection area that is a couple hundred millimeters wide.

 

Solving this application begins with selecting both the correct camera(s) and mounting technique. If two smart cameras, delivering image capture, processing and analysis in a single bundle, are mounted onto a multi-axis motion controlled fixture, manufacturers can use both cameras’ FOVs to their advantage. The cameras are placed below the conveyor so that as an aluminum wheel enters the first camera’s FOV, the camera can capture a picture of the bolt holes, then calculate the holes’ coordinates.

 

These coordinates are sent to the PC controlling the multi-axis fixture, telling it to move the second camera, featuring a much smaller FOV of perhaps 30 mm by 20 mm, into a position where it can view each bolt hole individually and measure the center point of each.

 

The next step is where employing robust vision software is of particular importance. While smart camera hardware is certainly critical, especially depending upon mounting and space requirements on the production line, the software is what makes these cameras intelligent.

 

Using specialized Circle Gauging algorithms, the software finds all the edge points of a bolt hole and calculates a best fit circle. The diameter of this fitted circle is then used to determine the wheel model. This inspection and verification process only requires 10 seconds per wheel, and it provides a cost-effective alternative to many high-end precision measurement systems.

 

Error-proof packaging labels

For safety, informational and aesthetic purposes, all consumer goods must be properly labeled. When varying labels are being produced on the same line, especially those that appear very much alike, a cookie-cutter machine vision software interface often isn’t enough.

 

After bottle and packaging labels are printed, they may be stacked for shipping. During this stacking process, labels similar in appearance may be inadvertently mixed, potentially leading an end-user to mislabel a product. Combining the smart camera technology with a standalone conveyor and proper lighting delivers an automated inspection solution.

 

The conveyor transports stacks of labels past a camera that is using diffused on-axis LED lighting %%MDASSML%% which provides even illumination and creates high contrast between the label’s features and its background, making it easier for the camera to identify the subtle differences between label varieties.

 

The camera position is adjustable so that a specific area within this label %%MDASSML%% one that differs slightly from all other similar labels %%MDASSML%% is within the camera’s FOV. This maximizes the camera’s ability to identify one specific label over another. The system additionally allows camera height to be adjusted, in order to accommodate stacks of varying label quantities.

 

Along with the camera and lighting adjustments, the system can incorporate a custom control panel that allows operators to configure and train this system to identify each label using a combination of inspection tools, such as Optical Character Recognition, pattern recognition and image comparison.

 

During this inspection process, the system validates that all labels in each stack are the same, and that the right labels are selected to meet a specified order before packaging.

 

Connecting the system

 

Sometimes inspecting a larger product with machine vision requires more than the average vision tools. It also requires software that can take several images and process them as a whole. For example, a connector must be accurately examined and measured in order to ensure it will properly mate up with other components during final assembly. This is another application where high precision, and high cost, measurement systems would traditionally be used. But machine vision can provide a more cost-efficient solution with the right camera and software combination.

 

To verify connector assembly using machine vision technology, a smart camera must be able to zoom in on specific sections of the connector in order to identify each component with high accuracy. Once it hones in on these sections, the camera’s FOV becomes too constricted to be able to fit the entire connector length.

 

To combat this challenge, a high-resolution camera is first adjusted so that only 1/6 of the length of a connector will be within the camera’s FOV at one time. After the connector is assembled, it is placed onto a conveyor for inspection, and as the connector moves to the next point on the conveyor, the camera takes a new picture of each connector section, allowing the camera to examine each section with high accuracy.

 

When all six images are stored, the full connector image is constructed using a Multiple Image Stitch software tool, which identifies overlapping features in each image and uses them to develop the full image. This tool is similar to old-fashioned panoramic modes on commercial cameras: it takes several individual images in succession, and then stitches them all together.

 

The entire connector can now be viewed as one image so that the full length and accurate measurements can be taken. This confirms that each assembled connector meets the required criteria, including pin/terminal height, pitch and coplanarity.

 

One of the keys to making this low cost solution easy to use is its software interface. An advantage of machine vision is that, with the right tools, users can actually see the inspection in process as it takes place.

 

Many systems are available with a user interface that allows new part inspections to be set up directly from the control panel. This interface may allow users also to view each image taken individually, as well as the full connector after the image is stitched together.

 

Since all images are saved and loaded, inspection setup and connector testing are performed quickly and simply. This combination of vision hardware, lighting and software ensures products are inspected thoroughly and efficiently on the line %%MDASSML%% saving manufacturers time, money and hassle in the short and long run.

 

Combining a smart camera with sufficient lighting and multi-faceted vision software ensures a comprehensive inspection solution.

 

Circle gauging algorithms are used to identify the edge points of each hole and calculate a best fit circle that corresponds with a wheel model.

 

To differentiate one aluminum wheel from another, machine vision may be used to examine hole patterns, which vary with each wheel model.

 

 

 

 

Author Information

Bradley Weber is director of application engineering at PPT Vision.

 



No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
2016 Product of the Year; Diagnose bearing failures; Asset performance management; Testing dust collector performance measures
Safety for 18 years, warehouse maintenance tips, Ethernet and the IIoT, GAMS 2016 recap
2016 Engineering Leaders Under 40; Future vision: Where is manufacturing headed?; Electrical distribution, redefined
SCADA at the junction, Managing risk through maintenance, Moving at the speed of data
Safety at every angle, Big Data's impact on operations, bridging the skills gap
The digital oilfield: Utilizing Big Data can yield big savings; Virtualization a real solution; Tracking SIS performance
Applying network redundancy; Overcoming loop tuning challenges; PID control and networks
Driving motor efficiency; Preventing arc flash in mission critical facilities; Integrating alternative power and existing electrical systems
Package boilers; Natural gas infrared heating; Thermal treasure; Standby generation; Natural gas supports green efforts

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
This article collection contains several articles on the vital role of plant safety and offers advice on best practices.
This article collection contains several articles on the Industrial Internet of Things (IIoT) and how it is transforming manufacturing.
This article collection contains several articles on strategic maintenance and understanding all the parts of your plant.
click me